[1] T. Gullinkala, Isabel Escobar, Study of the hydrophilic enhanced ultrafiltration membrane, Environ. Prog. 27(2) (2008) 210-217.[2] H. Strathmann, Membrane separation processes:current relevance and future opportunities, AIChE J. 47(5) (2001) 1077-1087.[3] K.G.S.T.A.Beltsios, K.L. Stefanopoulos, MembraneScience andApplications. Handbook of Porous Solids, 20022281-2433.[4] P. Vandezande, L.E. Gevers, I.F. Vankelecom, Solvent resistant nanofiltration:separating on a molecular level, Chem. Soc. Rev. 37(2) (2008) 365-405.[5] J. Mulder, Basic Principles of Membrane Technology, Springer Science & Business Media, 2012.[6] F. Yao, G.D. Fu, J. Zhao, E.T. Kang, K.G. Neoh, Antibacterial effect of surfacefunctionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization, J. Membr. Sci. 319(1-2) (2008) 149-157.[7] Z. Xu, J. Wang, L. Shen, D. Men, Y. Xu, Microporous polypropylene hollowfiber membrane:part I. Surface modification by the graft polymerization of acrylic acid, J. Membr. Sci. 196(2) (2002) 221-229.[8] S. Yu, Z. Chen, Q. Cheng, Z. Lü, M. Liu, C. Gao, Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions, Sep. Purif. Technol. 88(2012) 121-129.[9] Z. Xu, Microporous polypropylene hollow fiber membranes part Ⅱ. Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grafted membranes, J. Membr. Sci. 214(1) (2003) 71-81.[10] I.C. Escobar, E.M. Hoek, C.J. Gabelich, F.A. DiGiano, Committee report:recent advances and research needs in membrane fouling, Am. Water Work. Assoc. J. 97(8) (2005) 79.[11] F. Penacorada, A. Angelova, H. Kamusewitz, J. Reiche, L. Brehmer, Scanning force microscopy and wetting study of the surface modification of a polypropylene membrane by means of Langmuir-Blodgett film deposition, Langmuir 11(2) (1995) 612-617.[12] C.G.P.H. Schroen, M.C. Wijers, M.A. Cohen Stuart, A. van der Padt, K. van't Riet, Membrane modification to avoid wettability changes due to protein adsorption in an emulsion/membrane bioreactor, J. Membr. Sci. 80(1) (1993) 265-274.[13] H. Yu, Y. Xie, M. Hu, J. Wang, S. Wang, Z. Xu, Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR:CO2 plasma treatment, J. Membr. Sci. 254(1-2) (2005) 219-227.[14] K. Kato, E. Uchida, E. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains, Prog. Polym. Sci. 28(2) (2003) 209-259.[15] B. Boutevin, J.J. Robin, N. Torres, J. Casteil, Graft copolymerization of styrene onto ozonized polyethylene, Macromol. Chem. Phys. 203(1) (2002) 245-252.[16] E. Ruckenstein, Z. Li, Surface modification and functionalization through the selfassembled monolayer and graft polymerization, Adv. Colloid Interf. Sci. 113(1) (2005) 43-63.[17] X ZK., Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface:a novel approach, Langmuir 20(2004) 1481-1488.[18] Y. Yang, Y. Li, Q. Li, L. Wan, Z. Xu, Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling, J. Membr. Sci. 362(1-2) (2010) 255-264.[19] R. Kou, Z. Xu, H. Deng, Z. Liu, P. Seta, Y. Xu, Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside, Langmuir 19(17) (2003) 6869-6875.[20] Y. Wang, J. Kim, K. Choo, Y. Lee, C. Lee, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization, J. Membr. Sci. 169(2) (2000) 269-276.[21] Z. Liu, Z. Xu, J. Wang, J. Wu, J. Fu, Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone, Eur. Polym. J. 40(9) (2004) 2077-2087.[22] D. Garg, W. Lenk, S. Berwald, K. Lunkwitz, F. Simon, K. Eichhorn, Hydrophilization of microporous polypropylene Celgard® membranes by the chemical modification technique, J. Appl. Polym. Sci. 60(12) (1996) 2087-2104.[23] E. Gabriel, G. Gillberg, In situ modification of microporous membranes, J. Appl. Polym. Sci. 48(12) (1993) 2081-2090.[24] S.M. George, Atomic layer deposition:an overview, Chem. Rev. 110(2010) 111-131.[25] B. Gong, G.N. Parsons, Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition, J. Mater. Chem. 22(31) (2012) 15672.[26] A. Niskanen, K. Arstila, M. Leskela, M. Ritala, Radical enhanced atomic layer deposition of titanium dioxide, Chem. Vap. Depos. 13(4) (2007) 152-157.[27] C.A. Wilson RKG, S.M. George, Nucleation and growth during Al2O3 atomic layer deposition on polymers, Chem. Mater. 17(2005) 5625-5634.[28] M. Kemell, E. Farm, M. Ritala, M. Leskela, Surface modification of thermoplastics by atomic layer deposition of Al2O3 and TiO2 thin films, Eur. Polym. J. 44(11) (2008) 3564-3570.[29] G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, et al., Mechanisms and reactions during atomic layer deposition on polymers, Coord. Chem. Rev. 257(23-24) (2013) 3323-3331.[30] F. Li, L. Li, X. Liao, Y. Wang, Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique, J. Membr. Sci. 385-386(2011) 1-9.[31] Y.S. Jung, A.S. Cavanagh, L. Gedvilas, N.E. Widjonarko, I.D. Scott, S. Lee, et al., Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes, Adv. Energy Mater. 2(8) (2012) 1022-1027.[32] Q. Xu, Y. Yang, X. Wang, Z. Wang, W. Jin, J. Huang, et al., Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances, J. Membr. Sci. 415-416(2012) 435-443.[33] Q. Wang, X. Wang, Z. Wang, J. Huang, Y. Wang, PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2, J. Membr. Sci. 442(2013) 57-64.[34] Q. Xu, J. Yang, J. Dai, Y. Yang, X. Chen, Y. Wang, Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2 for simultaneously improved permeability and selectivity, J. Membr. Sci. 448(2013) 215-222.[35] H. Chen, L. Kong, Y. Wang, Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition, J. Membr. Sci. 487(2015) 109-116.[36] A. Roy Chowdhuri, C.G. Takoudis, R. Klie, N. Browning, Metalorganic chemical vapor deposition of aluminum oxide on Si:evidence of interface SiO2 formation, Appl. Phys. Lett. 80(22) (2002) 4241-4243.[37] M. Groner, F. Fabreguette, J. Elam, S. George, Low-temperature Al2O3 atomic layer deposition, Chem. Mater. 16(4) (2004) 639-645.[38] A. Ott, J. Klaus, J. Johnson, S. George, Al2O3 thin film growth on Si (100) using binary reaction sequence chemistry, Thin Solid Films 292(1) (1997) 135-144.[39] D.Y. Li, J. Hu, Z.X. Low, Z.X. Zhong, Y. Wang, Hydrophilic ePTFE membranes with highly enhanced water permeability and improved efficiency for multipollutant control, Ind. Eng. Chem. Res. 55(10) (2016) 2806-2812.[40] S.M. Lee, V. Ischenko, E. Pippel, A. Masic, O. Moutanabbir, P. Fratzl, et al., An alternative route towards metal-polymer hybrid materials prepared by vapor-phase processing, Adv. Funct. Mater. 21(16) (2011) 3047-3055.[41] S.M. Lee, E. Pippel, U. Gosele, C. Dresbach, Y. Qin, C.V. Chandran, et al., Greatly increased toughness of infiltrated spider silk, Science 324(5926) (2009) 488-492. |