[1] K.Y. Bell, M.J.M. Wells, K.A. Traexler, M.L. Pellegrin, A. Morse, J. Bandy, Emerging pollutants, Water Environ. Res. 83(2001) 1906-1984.[2] S.L. Loo, K.Y. Leong, P.E. Lim, Removal and transformation of hexavalent chromium in sequencing batch reactor, Water SA 38(2012) 9-14.[3] Y. Li, T. Rao, Z. Liu, Effect of granular activated carbon on the enhancement of cometabolic biodegradation of phenol and 4-chlorophenol, Tsinghua Sci. Technol. 15(2010) 580-585.[4] M.F.F. Sze, G. McKay, Enhanced mitigation of para-chlorophenol using stratified activated carbon adsorption columns, Water Res. 46(2012) 700-710.[5] K.Y. Leong, S. See, J.W. Lim, M.J.K. Bashir, K.M. Lam, T.L. Chew, Interaction of key process variables acting on the simultaneous adsorption of phenolics in binary solution:Trend and optimization of adsorption, J. Ind. Pollut. Control. 33(2017) 712-722.[6] J. Ren, W. Yang, M. Hua, B. Pan, W. Zhang, Bioregeneration of hyper-cross-linked polymeric resin preloaded with phenol, Bioresour. Technol. 142(2013) 701-705.[7] W.A. Al-Amrani, P.E. Lim, C.E. Seng, W.S. Wan Ngah, Effects of co-substrate and biomass acclimation concentration on the bioregeneration of azo-dye-loaded mono-amine modified silica, Bioresour. Technol. 143(2013) 584-591.[8] O. Aktas, F. Cecen, Bioregeneration of activated carbon:A review, Int. Biodeterior. Biodegrad. 59(2007) 257-272.[9] O. Aktas, Effect of S0/X0 ratio and acclimation of respiratory of activated sludge in the cometabolic biodegradation of phenolic compounds, Bioresour. Technol. 111(2012) 98-104.[10] M. Sharbatmaleki, J.R. Batista, Multi-cycle bioregeneration of spent perchloratecontaining macroporous selective anion-exchange resin, Water Res. 46(2012) 21-32.[11] S.M. Khor, C.E. Seng, P.E. Lim, S.L. Ng, A.N. Ahmad Sujari, Activated rice husk-based adsorbents for chlorophenol removal and their bioregeneration, Desalin. Water Treat. 57(2015) 10349-10360.[12] Z. Aksu, S.S. Cagatay, Investigation of biosorption of Germatol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems, Sep. Purif. Technol. 48(2006) 24-45.[13] N. Yalcin, V. Sevinc, Studies of the surface area and porosity of activated carbons prepared from rice husks, Carbon 38(2000) 1943-1945.[14] A. Shehzad, M.J.K. Bashir, S. Sethupathi, J.W. Lim, An insight into the remediation of highly contaminated landfill leachate using sea mango based activated bio-char:Optimization, isothermal and kinetic studies, Desalin. Water Treat. 57(2016) 22244-22257.[15] Z.G. Ng, J.W. Lim, H. Daud, S.L. Ng, M.J.K. Bashir, Reassessment of adsorptionreduction mechanism of hexavalent chromium in attaining practicable mechanistic kinetic model, Process. Saf. Environ. Prot. 102(2016) 98-105.[16] A. Shehzad, M.J.K. Bashir, S. Sethupathi, J.W. Lim, An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon, Process. Saf. Environ. Prot. 98(2015) 309-318.[17] P. Chen, Q. Xie, M. Addy, W. Zhou, Y. Liu, Y. Wang, Y. Cheng, K. Li, R. Ruan, Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production, Bioresour. Technol. 215(2016) 163-172.[18] E. Iakovleva, P. Maydannik, T.V. Ivanova, M. Sillanpaa, W.Z. Tang, E. Makila, J. Salonen, A. Gubal, A.A. Ganeev, K. Kamwilaisak, S. Wang, Modified and unmodified low-cost iron-containing solid wastes as adsorbents for efficient removal of As(Ⅲ) and As(V) from mine water, J. Clean. Prod. 133(2016) 1095-1104.[19] N.P. Cheremisinoff, Chapter 5-Mass separation equipment, Handbook of Chemical Processing Equipment, Butterworth-Heinemann, New Delhi, 2000, pp. 244-333.[20] J. Coca-Prados, G. Gutierrez-Cervello, Water Purification and Management, Springer, 2011(ISBN:978-90-481-9774-3).[21] T. Proll, G. Schony, G. Sprachmann, H. Hofbauer, Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO2 capture using solid sorbents in a continuous temperature swing adsorption process, Chem. Eng. Sci. 141(2016) 166-174.[22] J. Shabanian, J. Chaouki, Influence of interparticle forces on solids motion in a bubbling gas-solid fluidized bed, Powder Technol. 299(2016) 98-106.[23] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M.J. Sanchez-Montero, C. Izquierdo, Regeneration of carbonaceous adsorbents. Part Ⅱ:Chemical, microbiological and vacuum regeneration, Microporous Mesoporous Mater. 202(2015) 259-276.[24] M. Scholz, R.J. Martin, Ecological equilibrium on biological activated carbon, Water Res. 31(1997) 2959-2968.[25] G. Upadhyaya, J. Jackson, T.M. Clancy, K.V. Snyder, J. Brown, K.F. Hayes, L. Raskin, Effect of air-assisted backwashing on the performance of an anaerobic fixed-bed bioreactor that simultaneously removes nitrate and arsenic from drinking water sources, Water Res. 46(2012) 1309-1317.[26] A.K. Venkatesan, M. Sharbatmaleki, J.R. Batista, Bioregeneration of perchlorate-laden gel type anion-exchange resin in a fluidized bed reactor, J. Hazard. Mater. 177(2010) 730-737.[27] K. Katsoufidou, S.G. Yiantsios, A.J. Karabelas, An experimental study of UF membrane fouling by humic acid and sodium alginate solutions:The effect of backwashing on flux recovery, Desalination 220(2008) 214-227.[28] J. Yang, W. Liu, B. Li, H. Yuan, M. Tong, J. Gao, Application of a novel backwashing process in upflow biological aerated filter, J. Environ. Sci. 22(2010) 362-366.[29] M. Gao, Z. Chen, N. Ren, Z. Zhang, A novel application of automatic vacuum membrane bioreactor in wastewater reclamation, Desalination 247(2009) 583-593.[30] Y. Chen, X.X. Zhang, B. Wu, B. Liu, L. Xiao, A. Li, S. Cheng, Semivolatile organic compounds removal and health risk reduction in drinking water treatment biofilters applying different backwashing strategies, Int. J. Environ. Sci. Technol. 9(2012) 661-670.[31] X. Zhao, R.F. Hickey, T.C. Voice, Long-term evaluation of adsorption capacity in a biological activated carbon fluidized bed reactor system, Water Res. 33(1999) 2983-2991.[32] R. Treguer, R. Tatin, A. Couvert, D. Wolbert, A. Tazi-Pain, Ozonation effect on natural organic matter adsorption and biodegradation-Application to a membrane bioreactor containing activated carbon for drinking water production, Water Res. 44(2010) 781-788.[33] W. Nishijima, G.E. Speitel, Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon, Chemosphere 56(2004) 113-119.[34] X. Wang, L. Wang, Y. Liu, W. Duan, Ozonation pretreatment for ultrafiltration of the secondary effluent, J. Membr. Sci. 287(2007) 187-191.[35] S.J. Park, T.I. Yoon, J.H. Bae, H.J. Seo, H.J. Park, Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry, Process Biochem. 36(2001) 579-589.[36] L.T.J. Van der Aa, R.J. Kolpa, L.C. Rietveld, J.C. Van Dijk, Improved removal of pesticides in biological granular activated carbon filters by pre-oxidation of natural organic matter, J. Water Supply Res. Technol. 61(2012) 153-163.[37] L. Li, W. Zhu, P. Zhang, Q. Zhang, Z. Zhang, TiO2/UV/O3-BAC processes for removing refractory and hazardous pollutants in raw water, J. Hazard. Mater. 128(2006) 145-149.[38] D. Wu, X. Cheng, X. Zhai, Y. Wang, The combination process of ozone/ultraviolet/biological activated carbon filter for treatment of Huaihe micro-polluted water, Appl. Mech. Mater. 295-298(2013) 1384-1388.[39] L. Li, W. Zhu, P. Zhang, P. Lu, Q. Zhang, Z. Zhang, UV/O3-BAC process for removing organic pollutants in secondary effluents, Desalination 207(2007) 114-124.[40] L. Li, P. Zhang, W. Zhu, W. Han, Z. Zhang, Comparison of O3-BAC, UV/O3-BAC and TiO2/UV/O3-BAC processes for removing organic pollutants in secondary effluents, J. Photochem. Photobiol. A Chem. 171(2005) 145-151.[41] E. Sahinkaya, F.B. Dilek, Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures, J. Biotechnol. 127(2007) 716-726.[42] G. Briceno, H. Schalchli, C.S. Benimeli, G. Palma, G.R. Tortella, M.C. Diez, Use of pure and mixed culture of diazinon-degrading Streptomyces to remove other organophosphorus pesticides, Int. Biodeterior. Biodegrad. 114(2016) 193-201.[43] V.D. Jakovljevic, M.M. Vrvic, Potential of pure and mixed cultures of Cladosporium cladosporioides and Geotrichum candidum for application in bioremediation and detergent industry, Saudi J. Biol. Sci. (2016)https://doi.org/10.1016/j.sjbs.2016.01.020.[44] J.W. Lim, J.Z. Tan, C.E. Seng, Performance of phenol-acclimated activated sludge in the presence of various phenolic compounds, Appl Water Sci 3(2013) 515-525.[45] J.H. Kim, Oh. KK, S.T. Lee, S.W. Kim, S.I. Hong, Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor, Process Biochem. 37(2002) 1367-1373.[46] N. Pasukphun, S. Vinitnantharat, S. Gheewala, Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon (A/A BAC), Pak. J. Biol. Sci. 13(2010) 316-324.[47] S. See, J.W. Lim, P.E. Lim, C.E. Seng, S.L. Ng, R. Adnan, Enhancement of o-cresol removal using PAC and acclimated biomass immobilized in polyvinyl alcohol hydrogel beads, Desalin. Water Treat. 52(2014) 7951-7956.[48] S. See, P.E. Lim, J.W. Lim, C.E. Seng, R. Adnan, Evaluation of o-cresol removal using PVA-cryogel-immobilised biomass enhanced by PAC, Water SA 41(2015) 55-60.[49] S.L. Ng, C.E. Seng, P.E. Lim, Quantification of bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds, Chemosphere 75(2010) 1392-1400.[50] S.L. Ng, C.E. Seng, P.E. Lim, Bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds:kinetic modeling, Chemosphere 78(2010) 510-516.[51] W.D. Oh, P.E. Lim, C.E. Seng, N. Mohamed, R. Adnan, K.Y. Leong, S.Y. Voon, Effects of initial biomass concentration on bioregeneration of 4-chlorophenol-loaded granular activated carbon:Kinetic and efficiency studies, J. Chem. Technol. Biotechnol. 88(2013) 1157-1163.[52] Oh. WD, P.E. Lim, K.Y. Leong, S.L. Yong, H. Yin, Bioregeneration of granular activated carbon loaded with binary mixture of phenol and 4-chlorophenol, Desalin. Water Treat. 57(43) (2016) 20476-20482.[53] G. Mancini, M. Panzica, D. Fino, S. Capello, M.M. Yakimov, A. Luciano, Feasibility of treating emulsified oily and salty wastewaters through coagulation and bioregenerated GAC filtration, J. Environ. Manag. 203(2016) 817-824.[54] Z. Song, S.R.Edwards, R.G. Bums, Treatment ofnapthalene-2-sulfonic acid from tannery wastewater by a granular activated carbon fixed bed inoculated with bacteria isolates Arthrobacter globiformis and Comamonas testosteroni, Water Res. 40(2006) 495-506.[55] S. Vinitnantharat, A. Barat, Y. Ishibashi, S.R. Ha, Quantitative bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol, Environ. Technol. 22(2001) 339-344.[56] V. Abromaitis, V. Racys, P. Van der Marel, G. Ni, M. Dopson, A.L. Wolthuizen, R.J.W. Meulepas, Effect of shear stress and carbon surface roughness on bioregeneration and performance of suspended versus attached biomass in metoprolol-loaded biological activated carbon systems, Chem. Eng. J. 317(2017) 503-511.[57] K. Yapsakli, F. Cecen, Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochem. 45(2010) 355-362.[58] A.V. Vinod, G.V. Reddy, Simulation of biodegradation process of phenolic wastewater at higher concentrations in a fluidized-bed bioreactor, Biochem. Eng. J. 24(2005) 1-10.[59] I. Ivancev-Tumbas, B. Dalmacijia, Z. Tamas, E. Karlovic, Reuse of biologically regenerated activated carbon for phenol removal, Water Res. 32(1998) 1085-1094.[60] A.S.Sirotkin, L.Y. Koshkina, K.G.Ippolitov,TheBACprocessfor treatment ofwastewater containing non-ionogenic synthetic surfactants, Water Res. 35(2001) 3265-3271.[61] C.C. Chien, C.M. Kao, C.W. Chen, C.D. Dong, C.Y. Wu, Application of biofiltration system on AOC removal:Column and field studies, Chemosphere 71(2008) 1786-1793.[62] C. Kalkan, K. Yapsakli, B. Mertoglu, D. Tufan, A. Saatci, Evaluation of Biological Activated Carbon (BAC) process in wastewater secondary treatment for reclamation purposes, Desalination 265(2011) 266-273.[63] A.W.M. Ip, J.P. Barford, G.A. Mckay, comparative study on the kinetics and mechanisms removal of Reactive Black 5 by adsorption onto activated carbons and bone char, Chem. Eng. J. 157(2010) 434-442.[64] A. Imai, K. Onuma, Y. Inamori, R. Sudo, Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process, Water Res. 29(1995) 687-694.[65] B. Seredynska-Sobecka, M. Tomaszewska, M. Janus, A.W. Morawski, Biological activation of carbon filters, Water Res. 40(2006) 355-363.[66] A.R.H. Putz, D.E. Losh, G.E. Speitel Jr., Removal of nonbiodegradable chemicals from mixtures during granular activated carbon bioregeneration, J. Environ. Eng. 131(2005) 196-205.[67] E.S. Melin, K.T. Jarvinen, J.A. Puhakka, Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers, Water Res. 32(1998) 81-90.[68] A. Andersson, P. Laurent, A. Kihn, M. Prevost, P. Servais, Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment, Water Res. 35(2001) 2923-2934.[69] Y.H. Lin, J.Y. Leu, Kinetics of reactive azo-dye decolorisation by Pseudomonas luteola in a biological activated carbon process, Biochem. Eng. J. 39(2008) 457-467.[70] M.J. Kirisits, V.L. Snoeyink, H. Inan, J.C. Chee-Stanford, L. Raskin, J.C. Brown, Water quality factors affecting bromated reduction in biologically active carbon filters, Water Res. 35(2001) 891-900.[71] P.N. Bhattacharyya, D.K. Jha, Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture, World J. Microbiol. Biotechnol. 28(2012) 1327-1350.[72] H. Duan, L.C.C. Koe, R. Yan, X. Chen, Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter, Water Res. 40(2006) 2629-2636.[73] K. Nath, M.S. Bhakhar, S. Panchani, Bioregeneration of spent activated carbon:Effect of physico-chemical parameters, J. Sci. Ind. Res. 70(2011) 487-492.[74] O. Aktas, F. Cecen, Effect of activation type on bioregeneration of various activated carbons loaded with phenol, J. Chem. Technol. Biotechnol. 81(2006) 1081-1092.[75] O. Aktas, F. Cecen, Adsorption and cometabolic bioregeneration in activated carbon treatment of 2-nitrophenol, J. Hazard. Mater. 177(2010) 956-961.[76] S.R. Ha, S. Vinitnantharat, Y. Ishibashi, A modelling approach to bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol, J. Environ. Sci. Health 36(2001) 275-292.[77] O. Aktas, F. Cecen, Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol, Bioresour. Technol. 100(2009) 4604-4610.[78] Oh. WD, P.E. Lim, C.E. Seng, A.N.A. Sujari, Kinetic modeling of bioregeneration of chlorophenol-loaded granular activated carbon in simultaneous adsorption and biodegradation processes, Bioresour. Technol. 114(2012) 179-187.[79] A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon-A critical review, Chemosphere 58(2005) 1049-1070.[80] R.H. Toh, P.E. Lim, C.E. Seng, R. Adnan, Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol, Bioresour. Technol. 143(2013) 265-274.[81] K.Y. Leong, R. Adnan, P.E. Lim, S.L. Ng, C.E. Seng, Effect of operational factors on bioregeneration of binary phenol and 4-chlorophenol-loaded granular activated carbon using PVA-immobilized biomass cryogels, Environ. Sci. Pollut. Res. 24(26) (2017) 20959-20971.[82] K.Y. Leong, S. See, J.W. Lim, M.J.K. Bashir, C.A. Ng, L. Tham, Effect of process variables interaction on simultaneous adsorption of phenol and 4-chlorophenol:statistical modeling and optimization using RSM, Appl. Water Sci. 7(2017) 2009-2020.[83] V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol. 21(2003) 445-451.[84] I. Shah, R. Adnan, W.S.W. Ngah, N. Mohamed, Y.H.T. Yap, A new insight to the physical interpretation of activated carbon and iron doped carbon material:Sorption affinity towards organic dye, Bioresour. Technol. 160(2014) 52-56. |