[1] R. Dewil, J. Baeyensa, R. Goutvrind, The use of ultrasonics in the treatment of waste activated sludge, Chin. J. Chem. Eng. 14(1) (2006) 105-113.[2] A.D. Kotzapetros, P.A. Paraskevas, A.S. Stasinakis, Design of a modern automatic control system for the activated sludge process in wastewater treatment, Chin. J. Chem. Eng. 23(8) (2015) 1340-1349.[3] X. Flores-Alsina, J. Comas, I. Rodriguez-Roda, K.V. Gernaey, C. Rosen, Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model, Water Res. 43(18) (2009) 4527-4538.[4] M. Laureni, D.G. Weissbrodt, I. Szivak, O. Robin, J.L. Nielsen, E. Morgenroth, A. Joss, Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater, Water Res. 80(1) (2015) 325-336.[5] J. Wang, Q. Li, R. Qi, V. Tandoi, M. Yang, Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant, Process Biochem. 49(12) (2014) 2258-2265.[6] W. Li, P. Zheng, Y.L. Wu, E.C. Zhan, Z.H. Zhang, R. Wang, Y.J. Xing, G. Abbas, B.S. Zeb, Sludge bulking in a high-rate denitrifying automatic circulation (DAC) reactor, Chem. Eng. J. 240(6) (2014) 387-393.[7] J. Wang, R. Qi, M. Liu, Q. Li, H. Bao, Y. Li, S. Wang, V. Tandoi, M. Yang, The potential role of Candidatus Microthrix parvicella in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants, Water Sci. Technol. 70(2) (2014) 367-375.[8] I. Lou, Combination of respirometry and molecular approach for re-evaluating microbial kinetic selection of filamentous bulking in wastewater treatment system, Adv. Sci. Lett. 9(1) (2012) 540-544.[9] P.H. Nielsen, P. Roslev, T.E. Dueholm, J.L. Nielsen, Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants, Water Sci. Technol. 46(1-2) (2002) 73-80.[10] H. Han, J.F. Qiao, Prediction of activated sludge bulking based on a self-organizing RBF neural network, J. Process Control 22(6) (2012) 1103-1112.[11] M. Tampus, A. Martins, L.M. Van, The effect of anoxic selectors on sludge bulking, Water Sci. Technol. 50(6) (2004) 261-268.[12] J.H. Choi, H.L. Sang, K. Fukushi, K. Yamamoto, Comparison of sludge characteristics and PCR-DGGE based microbial diversity of nanofiltration and microfiltration membrane bioreactors, Chemosphere 67(8) (2007) 1543-1550.[13] M. Eschenhagen, M. Schuppler, I. Roske, Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents, Water Res. 37(13) (2003) 3224-3232.[14] A.A. Zinatizadeh, A.R. Mohamed, M.D. Mashitah, A.Z. Abdullah, I.M. Hasnain, Characteristics of granular sludge developed in an up-flow anaerobic sludge fixedfilm bioreactor treating palm oil mill effluent, Water Environ. Res. 79(8) (2007) 833-844.[15] A.M. Martins, K. Pagilla, J.J. Heijnen, M.C. van Loosdrecht, Filamentous bulking sludge:a critical review, Water Res. 38(4) (2004) 793-817.[16] S.M. Kotay, T. Datta, J. Choi, R. Goel, Biocontrol of biomass bulking caused by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage, Water Res. 45(1) (2011) 694-704.[17] I. Lou, Y.C. Zhao, Sludge bulking prediction using principle component regression and artificial neural network, Math. Probl. Eng. 583(3) (2012) 295-308.[18] D.P. Mesquita, O. Dias, A.M.A. Dias, A.L. Amaral, E.C. Ferreira, Correlation between sludge settling ability and image analysis information using partial least squares, Anal. Chim. Acta 642(1) (2009) 94-101.[19] M.G. Adonadaga, Effect of dissolved oxygen concentration on morphology and settleability of activated sludge flocs, J. Appl. Environ. Microbiol. 3(2) (2015) 31-37.[20] D.L. Giokas, G.T. Daigger, M. von Sperling, Y. Kim, P.A. Paraskevas, Comparison and evaluation of empirical zone settling velocity parameters based on sludge volume index using a unified settling characteristics database, Water Res. 37(16) (2003) 3821-3836.[21] E. Ramin, D.S. Wagner, L. Yde, P.J. Binning, M.R. Rasmussen, P.S. Mikkelsen, B.G. Plosz, A new settling velocity model to describe secondary sedimentation, Water Res. 66(1) (2014) 447-458.[22] D. Jassby, Y. Xiao, A.J. Schuler, Biomass density and filament length synergistically affect activated sludge settling:systematic quantification and modeling, Water Res. 48(1) (2014) 457-465.[23] I.Y. Smets, E.N. Banadda, J. Deurinck, N. Renders, R. Jenne, J.F. van Impe, Dynamic modeling of filamentous bulking in lab-scale activated sludge processes, J. Process Control 16(3) (2006) 313-319.[24] M. Bagheri, S.A. Mirbagheri, Z. Bagheri, A.M. Kamarkhani, Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach, Process Saf. Environ. Prot. 95(1) (2015) 12-25.[25] H. Han, J. Qiao, Hierarchical neural network modeling approach to predict sludge volume index of wastewater treatment process, IEEE Trans. Control Syst. Technol. 21(6) (2013) 2423-2431.[26] H. Han, Q. Chen, J. Qiao, An efficient self-organizing RBF neural network for water quality prediction, Neural Netw. 24(7) (2011) 717-725.[27] S. Yin, S.X. Ding, X. Xie, H. Luo, A review on basic data-driven approaches for industrial process monitoring, IEEE Trans. Ind. Electron. 61(11) (2014) 6418-6428.[28] H. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived soft-sensors for biological wastewater treatment plants:an overview, Environ. Model. Softw. 47(1) (2013) 88-107.[29] J.M. Brault, R. Labib, M. Perrier, P. Stuart, Prediction of activated sludge filamentous bulking using ATP data and neural networks, Can. J. Chem. Eng. 89(4) (2011) 901-913.[30] Q.Q. Tian, J.J. Chen, J.K. Dong, A method of constructing the fuel efficiency model based on quadratic polynomial regression, Procedia Eng. 15(1) (2011) 3749-3753. |