[1] L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep. 2(2016) 157-167.[2] S. Wang, D. Shi, R. Yang, Y. Xu, H. Guo, X. Yang, Solvent extraction of phenol from aqueous solution with benzyl 2-ethylhexyl sulfoxide as a novel extractant, Can. J. Chem. Eng. 93(2015) 1787-1792.[3] N. Austin, N. Sahinidis, D. Trahan, Computer-aided molecular design:An introduction and review of tools, applications, and solution techniques, Chem. Eng. Res. Des. 116(2016) 2-26.[4] P.M. Harper, R. Gani, A multi-step and multi-level approach for computer aided molecular design, Comput. Chem. Eng. 24(2000) 677-683.[5] A. Meniai, D.M.T. Newsham, Molecular solvent design for liquid-liquid extraction using the UNIQUAC model, Fluid Phase Equilib. 158(1999) 327-335.[6] L. Zhang, S. Cignitti, R. Gani, Generic mathematical programming formulation and solution for computer-aided molecular design, Comput. Chem. Eng. 78(2015) 79-84.[7] B. Liu, Y. Wen, X. Zhang, Development of CAMD based on the hybrid gene algorithm and simulated annealing algorithm and the application on solvent selection, Can. J. Chem. Eng. 95(2016) 767-774.[8] O. Odele, S. Macchietto, Computer-aided molecular design - A novel method for optimal solvent selection, Fluid Phase Equilib. 82(1993) 47-54.[9] B. Liu, Y. Wen, X. Zhang, Development of CAMD based on the hybrid gene algorithm and simulated annealing algorithm and the application on solvent selection, Can. J. Chem. Eng. 95(2017) 767-774.[10] J.D. Scheffczyk, L. Fleitmann, A. Schwarz, M. Lampe, A. Bardow, K. Leonhard, COSMOCAMD:A framework for optimization-based computer-aided molecular design using COSMO-RS, Chem. Eng. Sci. 159(2017) 84-92.[11] A.I. Papadopoulos, S. Badr, A. Chremos, E. Forte, T. Zarogiannis, P. Seferlis, S. Papadokonstantakis, A. Galindo, G. Jackson, C.S. Adjiman, Computer-aided molecular design and selection of CO2 capture solvents based on thermodynamics, reactivity and sustainability, Mol. Syst. Des. Eng. 1(2016) 313-334.[12] A.T. Karunanithi, L. Achenie, R. Gani, A computer-aided molecular design framework for crystallization solvent design, Chem. Eng. Sci. 61(2006) 1247-1260.[13] D.S. Wicaksono, A. Mhamdi, W. Marquardt, Computer-aided screening of solvents for optimal reaction rates, Chem. Eng. Sci. 115(2014) 167-176.[14] A. Samudra, N. Sahinidis, Design of heat-transfer media components for retail food refrigeration, Ind. Eng. Chem. Res. 52(2013) 8518-8526.[15] K. McBride, T. Gaide, A.J. Vorholt, A. Behr, K. Sundmacher, Thermomorphic solvent selection for homogeneous catalyst recovery based on COSMO-RS, Chem. Eng. Process. 99(2016) 97-106.[16] J.C. Eslick, Q. Ye, J. Park, E. Topp, P. Spencer, K.V. Camarda, A computational molecular design framework for crosslinked polymer networks, Comput. Chem. Eng. 33(2009) 954-963.[17] J. Heintz, J.P. Belaud, N. Pandya, M. Santos, V. Gerbaud, Computer aided product design tool for sustainable product development, Comput. Chem. Eng. 71(2014) 362-376.[18] CIRS, New chemical substance declaration-conventional declaration, https://www.cirscn.com/faq/china-reach/1182-china-reach.html, Accessed date:6 November 2017.[19] H. Song, X. Li, A simplified method for molecular design of extractive solvents, Chem. Ind. Eng. 23(2006) 536-538.[20] Wikipedia, Safety data sheet, https://en.wikipedia.org/wiki/Safety_data_sheet, Accessed date:6 November 2017.[21] CIRS, Global chemical inventories, http://www.cirs-reach.com/Inventory/Global_Chemical_Inventories.html, Accessed date:6 November 2017.[22] A. Dalby, J.G. Nourse, W.D. Hounshell, A.K.I. Gushurst, D.L. Grier, B.A. Leland, J. Laufer, Description of several chemical structure file formats used by a computer program developed at molecule design limited, J. Chem. Inf. Comput. Sci. 32(1992) 244-255.[23] J. Gmehling, A. Schedemann, Selection of solvents or solvent mixtures for liquid-liquid extraction using predictive thermodynamic models or access to the Dortmund Data Bank, Ind. Eng. Chem. Res. 53(2014) 17794-17805.[24] L. Constantinou, R. Gani, New group-contribution method for estimating properties of pure compounds, AIChE J 40(1994) 1697-1710.[25] U. Weidlich, J. Gmehling, A. Modified, UNIFAC model. 1. Prediction of VLE, HE, and gamma-infinity, Ind. Eng. Chem. Res. 26(1987) 1372-1381.[26] J. Gmehling, J. Li, M. Schiller, A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties, Ind. Eng. Chem. Res. 32(1993) 178-193.[27] J. Lohmann, R. Joh, J. Gmehling, From UNIFAC to modified UNIFAC (Dortmund), Ind. Eng. Chem. Res. 40(2001) 957-964.[28] K.G. Joback, R.C. Reid, Estimation of pure-component properties from group-contributions, Chem. Eng. Commun. 57(1987) 233-243.[29] E.C. Ihmels, J. Gmehling, Extension and revision of the group contribution method GCVOL for the prediction of pure compound liquid densities, Ind. Eng. Chem. Res. 42(2003) 408-412.[30] Y. Liang, G. Li, P. Ma, Estimation of liquid viscosity of pure compounds at different temperatures by a corresponding-states group-contribution method, Fluid Phase Equilib. 198(2002) 123-130.[31] The R project for statistical computing, https://www.r-project.org, Accessed date:6 November 2017.[32] R. Schmid, Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule, Monatsh. Chem. 132(2001) 1295-1326. |