[1] S. Weyer, M. Schmitt, M. Ohmer, D. Gorecky, Towards Industry 4.0-standardization as the crucial challenge for highly modular, multi-vendor production systems, IFACPap. Online 48-3(2015) 579-584.[2] P.D. Christofides, J.F. Davis, N.H. EI-Farra, D. Clark, K.R.D. Harris, J.N. Gipson, Smart plant operations:vision, process and challenges, AIChE J. 53(2007) 2734-2741.[3] Dai Yiyang, Hangzhou Wang, Khan Faisal, Zhao Jinsong, Abnormal situation management for smart chemical process operation, Curr. Opin. Chem. Eng. 14(2016) 49-55.[4] Shu Yidan, Zhao Jinsong, Fault diagnosis of chemical processes using artificial immune system with vaccine transplant, Ind. Eng. Chem. Res. 55(2016) 3360-3371.[5] Dai Yiyang, Zhao Jinsong, Fault diagnosis of batch chemical processes using a dynamic time warping (DTW)-based artificial immune system, Ind. Eng. Chem. Res. 50(2011) 4534-4544.[6] K. Ghosh, M. Ramteke, R. Srinivasan, Optimal variable selection for effective statistical process monitoring, Comput. Chem. Eng. 60(2014) 260-276.[7] Z.H. Sun, G. Bebis, R. Miller, Object detection using feature subset selection, Pattern Recogn. 37(11) (2004) 2165-2167.[8] I. Inza, P. Larranaga, R. Blanco, et al., Filter versus wrapper gene selection approaches in DNA microarray domains, Artif. Intell. Med. 31(2) (2004) 91-103.[9] Zhou Xiaobo, Xiaodong Wang, E.R. Dougherty, Nonlinear probit gene classification using mutual information and wavelet based feature selection, Biol. Syst. 12(3) (2004) 371-386.[10] T.S. Furey, N. Cristianini, N. Duffy, et al., Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics 16(10) (2000) 906-914.[11] I. Tabus, J. Astola, On the use of MDL principle in gene expression prediction, EURASIP J. Appl. Signal Process. 4(2001) 297-303.[12] Liu Huiqing, Li Jinyan, L. Wong, A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns, Genome Inform. 13(2002) 51-60.[13] Chen Xuewen, An improved branch and bound algorithm for feature selection, Pattern Recogn. Lett. 24(12) (2003) 1925-1933.[14] L. Zhang, L.B. Jack, A.K. Nandi, Fault detection using genetic programming, Mech. Syst. Signal Process. 19(2005) 271-289.[15] S.W. Lin, S.C. Chen, PSOLDA:a particle swarm optimization approach for enhancing classification accuracy rate of linear discrimination analysis, Appl. Soft Comput. 9(2009) 1008-1015.[16] I. Guyon, J. Weston, S. Brarnhill, et al., Gene selection for cancer classification using support vector machine, Mach. Learn. 46(1/2/3) (2002) 389-422.[17] A.K. Jain, D. Zongker, Feature selection:evaluation application, and small sample performance, IEEE Trans. Pattern Anal. Mach. Intell. 19(2007) 153-158.[18] M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, A.K. Jain, Dimensionality reduction using genetic algorithm, IEEE Trans. Evol. Comput. 4(2) (2000) 164-171.[19] S. Verron, T. Tiplica, A. Kobi, Fault detection and identification with a new feature selection based on mutual information, J. Process Control 18(2008) 479-490.[20] R.A. Goldsby, T.J. Kindt, B.A. Osborne, J. Kuby, Immunology, 5th edition W. H. Freeman and Company, San Francisco, CA, 2003.[21] L.N. de Castro, J.I. Timmis, Artificial immune systems:a novel paradigm to pattern recognition, in:J.M. Corchado, L. Alonso, C. Fyfe (Eds.), Artificial Neural Networks in Pattern Recognition, University of Paisley, U.K. 2002, pp. 67-84.[22] L.H. Chiang, E.L. Russell, R.D. Braatz, Fault Detection and Diagnosis in Industrial Systems, Springer-Verlag London Limited, Briton, 2001.[23] A. Bathelt, N.L. Ricker, M. Jelali, Revision of the Tennessee Eastman Process model, IFAC (Int. Fed. Automatic Control) Pap. Online 48(8) (2015) 309-314.[24] S. Yin, S.X. Ding, A. Haghani, H.Y. Hao, P. Zhang, A comparison study of basic datadriven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, J. Process Control 22(2012) 1567-1581.[25] M.A.A. Rad, M.J. Yazdanpanah, Designing supervised local neural network classifiers based on EM clustering for fault diagnosis of Tennessee Eastman process, Chemom. Intell. Lab. Syst. 146(2015) 149-157.[26] Q.C. Jiang, B. Huang, X.F. Yan, GMM and optimal principal components-based Bayesian method for multimode fault diagnosis, Comput. Chem. Eng. 84(2016) 338-349. |