[1] H.A. Alhashimi, C.B. Aktas, Life cycle environmental and economic performance of biochar compared with activated carbon:A meta-analysis, Resour. Conserv. Recycl. 118(2017) 13-26.[2] Y. Arushanyan, E. Ekener, Asa Moberg, Sustainability assessment framework for scenarios-SAFS, Environ. Impact Assess. Rev. 63(2017) 23-34.[3] J. Shao, M. Taisch, M.O. Mier, Influencing factors to facilitate sustainable consumption:From the experts' viewpoints, J. Clean. Prod. 142(6) (2017) 203-216.[4] M.P. Docekalova, A. Kocmanova, Composite indicator for measuring corporate sustainability, Ecol. Indic. 61(2016) 612-623.[5] T.L. Saaty, Group decision making and the AHP, Analytic Hierarchy Process Application & Studies 1989, pp. 59-67.[6] R.K. Singh, H.R. Murty, S.K. Gupta, A.K. Dikshit, Development of composite sustainability performance index for steel industry, Ecol. Indic. 7(3) (2007) 565-588.[7] A.G. Frank, N.D. Molle, W. Gerstlberger, J.A.B. Bernardi, D.C. Pedrini, An integrative environmental performance index for benchmarking in oil and gas industry, J. Clean. Prod. 133(2016) 1190-1203.[8] Y. Long, J. Pan, S. Farooq, H. Boer, A sustainability assessment system for Chinese iron and steel firms, J. Clean. Prod. 125(2016) 133-144.[9] N.D. Pour, B. Huang, S.L. Shah, Performance assessment of advanced supervisory-regulatory control systems with subspace LQG benchmark, Automatica 46(8) (2010) 1363-1368.[10] C. Zhao, Y. Zhao, H. Su, B. Huang, Economic performance assessment of advanced process control with LQG benchmarking, J. Process Control 19(4) (2009) 557-569.[11] S. Wei, J. Cheng, Y. Wang, Data-driven two-dimensional LQG benchmark based performance assessment for batch processes under ILC, IFAC PapersOnline 48(8) (2015) 291-296.[12] X. Tian, G. Chen, S. Chen, A data-based approach for multivariate model predictive control performance monitoring, Neurocomputing 74(4) (2011) 588-597.[13] F. Xu, B. Huang, S. Akande, Performance assessment of model predictive control for variability and constraint tuning, Ind. Eng. Chem. Res. 46(4) (2007) 1208-1219.[14] N.A. And, B. Huang, E.C. Tamayo, Assessing model prediction control (MPC) performance. 1. Probabilistic approach for constraint analysis, Ind. Eng. Chem. Res. 46(24) (2007) 8101-8111.[15] N.A. And, B. Huang, E.C. Tamayo, Assessing model prediction control (MPC) performance. 2. Bayesian approach for constraint tuning, Ind. Eng. Chem. Res. 46(24) (2007) 8112-8119.[16] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17(3) (1993) 245-255.[17] X. Gao, J. Hou, An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process, Neurocomputing 174(2016) 906-911.[18] H. Chen, P. Tino, X. Yao, Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space, Comput. Chem. Eng. 67(3) (2014) 33-42.[19] M. Golshan, M.R. Pishvaie, R. Bozorgmehry Boozarjomehry, Stochastic and global real time optimization of Tennessee Eastman challenge problem, Eng. Appl. Artif. Intell. 21(2) (2008) 215-228.[20] M. Golshan, R.B. Boozarjomehry, M.R. Pishvaie, A new approach to real time optimization of the Tennessee Eastman challenge problem, Chem. Eng. J. 112(1-3) (2005) 33-44.[21] N.L. Ricker, Optimal steady-state operation of the Tennessee Eastman challenge process, Comput. Chem. Eng. 19(9) (1995) 949-959.[22] N.L. Ricker, Decentralized control of the Tennessee Eastman Challenge Process, J. Process Control 6(4) (1996) 205-221.[23] I.T. Jolliffe, Principal Component Analysis, Springer, Berlin, 1986.[24] K.I. Diamantaras, S.Y. Kung, Principal Component Neural Networks, Wiley, New York, 1996.[25] Y. Xu, D. Zhang, F. Song, J.Y. Yang, Z. Jing, A method for speeding up feature extraction based on KPCA, Neurocomputing 70(4-6) (2007) 1056-1061.[26] C.Y. Cheng, C.C. Hsu, M.C. Chen, Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes, Ind. Eng. Chem. Res. 49(5) (2010) 2254-2262.[27] I. Elaissi, I. Jaffel, O. Taouali, H. Messaoud, Online prediction model based on the SVD-KPCA method, ISA Trans. 52(1) (2013) 96-104.[28] J. Yang, A.F. Frangi, J.Y. Yang, D. Zhang, Z. Jin, KPCA plus LDA:A complete kernel fisher discriminant framework for feature extraction and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 27(2) (2005) 230-244.[29] J. Ni, C. Zhang, S.X. Yang, An adaptive approach based on KPCA and SVM for realtime fault diagnosis of HVCBs, IEEE Trans. Power Delivery 26(3) (2011) 1960-1971.[30] T. Kohonen, The self-organizing map, Proc. IEEE 78(9) (1990) 1464-1480.[31] Y.S. Ng, R. Srinivasan, Multivariate temporal data analysis using self-organizing maps. 2. Monitoring and diagnosis of multistate operations, Ind. Eng. Chem. Res. 47(20) (2008) 7758-7771.[32] Y.S. Ng, R. Srinivasan, Multivariate temporal data analysis using self-organizing maps. 1. Training methodology for effective visualization of multistate operations, Ind. Eng. Chem. Res. 47(20) (2008) 7744-7757.[33] B. Lamrini, E.K. Lakhal, M.V.L. Lann, L. Wehenkel, Data validation and missing data reconstruction using self-organizing map for water treatment, Neural Comput. & Applic. 20(4) (2011) 575-588.[34] Y. Tian, W. Du, F. Qian, High dimension feature extraction based visualized SOM fault diagnosis method and its application in p-xylene oxidation process, Chin. J. Chem. Eng. 23(9) (2015) 1509-1517.[35] Z.Y. Zhang, H.Y. Zha, Principal manifolds and nonlinear dimensionality reduction via tangent space alignment, J. Shanghai Univ. 8(4) (2004) 406-424.[36] X. Chen, X. Yan, Using improved self-organizing map for fault diagnosis in chemical industry process, Chem. Eng. Res. Des. Trans. Inst. 90(12) (2012) 2262-2277.[37] X. Chen, X. Yan, Fault diagnosis in chemical process based on self-organizing map integrated with fisher discriminant analysis, Chin. J. Chem. Eng. 20(4) (2013) 382-387. |