[1] S.P. Cai, H. Suzuki, Y. Komoda, Drag-reduction of a nonionic surfactant aqueous solution and its rheological characteristics, Sci. China Technol. Sci. 55(2012) 772-778.[2] Z. Wang, K. Yong, X.C. Wang, D. Li, D. Hu, Investigating the hydrodynamics of airlift pumps by wavelet packet transform and the recurrence plot, Exp. Thermal Fluid Sci. 92(2018) 56-68.[3] Z. Wang, K. Yong, X.C. Wang, D. Li, D. Hu, Investigating the flow characteristics of airlift pumps operating in gas-liquid two-phase flow, Chin. J. Chem. Eng. 26(2018) 219-227.[4] S.Z. Kassab, H.A. Kandila, H.A. Wardaa, W.H. Ahmed, Air-lift pumps characteristics under two-phase flow conditions, Int. J. Heat Fluid Flow 30(2009) 88-98.[5] S.Z. Kassab, H.A. Kandila, H.A. Wardaa, W.H. Ahmed, Experimental and analytical investigations of airlift pumps operating in three-phase flow, Chem. Eng. J. 131(2007) 273-281.[6] R.V. Hout, A. Gulitski, D. Brauner, L. Shemer, Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water, Int. J. Multiphase Flow 28(2002) 579-596.[7] P. Hanafizadeh, G. Soheil, H.S. Mohammad, Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump, J. Pet. Sci. Eng. 75(2011) 327-335.[8] A. Seshadri, S. Mahadevan, V. Muniyandi, Measurement of liquid film thickness in air-water two phase flows in conventional and mini channels using image processing, Korean J. Chem. Eng. 32(2015) 826-836.[9] G. Xia, Z. Cui, L. Qing, A model for liquid slug length distribution in vertical gas-liquid slug flow, J. Hydrodyn. Ser. B 21(2009) 491-498.[10] Q. Lu, D.Q. Chen, Q.H. Wang, Visual investigation on the interface morphology of Taylor bubble and the characteristics of two-phase flow in mini-channel, Chem. Eng. Sci. 134(2015) 96-107.[11] D. Brauner, Y. Taitel, A model for slug length distribution in gas-liquid slug flow, Int. J. Multiphase Flow 19(1993) 829-838.[12] D.J. Nicklin, J.O. Wilkes, J.F. Davidson, Two phase flow in vertical tubes, Trans. Inst. Chem. Eng. 40(1962) 61-68.[13] Y. Taitel, D. Brauner, Two-phase slug flow, Adv. Heat Tran. 20(1990) 83-132.[14] V. Talimi, Y.S. Muzychka, S. Kocabiyik, A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels, Int. J. Multiphase Flow 39(2012) 88-104.[15] R.C. Fernandes, R. Semiat, A.E. Dukler, Hydrodynamic model for gas-liquid slug flow in vertical tubes, AICHE J. 29(1983) 981-989.[16] N. Brauner, A. Ullmann, Modelling of gas entrainment from Taylor bubbles. Part A:Slug flow, Int. J. Multiphase Flow 30(2004) 239-272.[17] N. Brauner, A. Ullmann, Modeling of phase inversion phenomenon in two-phase pipe flows, Int. J. Multiphase Flow 28(2002) 1177-1204.[18] Z.-S. Mao, A.E. Dukler, Rise velocity of a Taylor bubble in a train of such bubbles in a flowing liquid, Chem. Eng. Sci. 40(1985) 2158-2160.[19] R. Van Hout, D. Brauner, L. Shemer, Translational velocities of elongated bubbles in continuous slug flow, Int. J. Multiphase Flow 28(2002) 1333-1350.[20] E.E. Zukoski, Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes, J. Fluid Mech. 25(1966) 821-837.[21] T.J. Lin, H.G. Donnely, Gas bubble entrainment by plunging laminar liquid jets, AICHE J. 12(1966) 563-572.[22] M.J. McCarthy, W.G. Kirchner, N.A. Molloy, Mechanism of gas bubble entrainment by plunging liquid jets, Trans. Inst. Min. Metall. 78(1969) 239-241.[23] R. Delfos, C.J. Wisse, R.V.A. Oliemans, Measurement of air-entrainment from a stationary Taylor bubble in a vertical tube, Int. J. Multiphase Flow 27(2001) 1769-1787.[24] P.H. Calderbank, Physical rate processes in industrial fermentations:Part 1:The interfacial area in gas-liquid contacting with mechanical agitation, Trans. Inst. Chem. Eng. 36(1958) 443-463.[25] R.S. Brodkey, The Phenomena of Fluid Motions, Physics Today 22(9) (1969) 85.[26] N. Brauner, The prediction of dispersed flows boundaries in liquid-liquid and gas-liquid systems, Int. J. Multiphase Flow 27(2001) 885-910.[27] M. Sevik, S. Park, The splitting of drops and bubbles by turbulent fluid flow, J. Fluid Eng. Trans. ASME 95(1973) 54-59.[28] T.Z. Harmathy, Velocity of large drops and bubbles in media of infinite or restricted extent, AICHE J. 6(1960) 281-288.[29] A.E. Dukler, M.G. Hubbard, A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14(1975) 337-347.[30] T. Hibiki, M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, Int. J. Heat Mass Transf. 46(2003) 4935-4948.[31] G.B. Wallis, One-Dimensional two-Phase Flow, McGraw-Hill, New Yor, NY, 1969431.[32] Y.P. Liu, P.Y. Wang, X.L. Zhao, Z.H. Du, Study on the flow structure and its effects on the interaction and formation of cryogenic Taylor bubbles by PIV technique and POD analysis, Can. J. Chem. Eng. 92(2014) 374-389.[33] H. Liu, C.O. Vandu, R. Krishna, Hydrodynamics of Taylor flow in vertical capillaries:Flow regimes, bubble rise velocity, liquid slug length, and pressure drop, Ind. Eng. Chem. Res. 44(2005) 4884-4897.[34] T. Abadie, J. Aubin, D. Legendre, Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels, Microfluid. Nanofluid. 12(2012) 355-369.[35] O.J. Nydal, S. Pintus, P. Andreussi, Statistical characterization of slug flow in horizontal pipes, Int. J. Multiphase Flow 18(1992) 439.[36] W.P. Jepson, R.E. Taylor, Slug flow and its transitions in large-diameter horizontal pipes, Int. J. Multiphase Flow 19(1993) 411. |