[1] D. Chung, S.Y. Kim, J.H. Ahn, Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli, Sci. Rep. 7(2017) 2578.[2] R. Chandramohan, S. Saravanan, L. Pari, Beneficial effects of tyrosol on altered glycoprotein components in streptozotocin-induced diabetic rats, Pharm. Biol. 55(2017) 1631-1637.[3] H. Soejima, K. Tsuge, T. Yoshimura, K. Sawada, H. Kitagaki, Breeding of a high tyrosol-producing sake yeast by isolation of an ethanol-resistant mutant from a trp3 mutant, J. Inst. Brew. 118(2012) 264-268.[4] L.R. Silva, P.B. Andrade, P. Valentao, R.M. Seabra, M.E. Trujillo, E. Velazquez, Analysis of non-coloured phenolics in red wine:Effect of Dekkera bruxellensis yeast, Food Chem. 89(2005) 185-189.[5] P. Dewapriya, Y.X. Li, S.W.A. Himaya, S.K. Kim, Isolation and characterization of marine-derived Mucor sp. for the fermentative production of tyrosol, Process Biochem. 49(2014) 1402-1408.[6] B.R. Di, R. Vari, B. Scazzocchio, C. Filesi, C. Santangelo, C. Giovannini, P. Matarrese, M. D'Archivio, R. Masella, Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness, Nutr. Metab. Cardiovasc. Dis. 17(2007) 535-545.[7] N. Allouche, M. Damak, R. Ellouz, S. Sayadi, Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol, Appl. Environ. Microbiol. 148(1992) 14-27.[8] Y. Satoh, K. Tajima, M. Munekata, J.D. Keasling, T.S. Lee, Engineering of a tyrosolproducing pathway, utilizing simple sugar and the central metabolic tyrosine, in Escherichia coli, J. Agric. Food Chem. 60(2012) 979-984.[9] Y. Xue, X. Chen, C. Yang, J. Chang, W. Shen, Y. Fan, Engineering Eschericha coli for enhanced tyrosol production, J. Agric. Food Chem. 65(2017) 4708-4714.[10] L.A. Hazelwood, J.M. Daran, A.J.A. Van Maris, J.T. Pronk, J.R. Dickinson, The Ehrlich pathway for fusel alcohol production:A century of research on Saccharomyces cerevisiae metabolism, Appl. Environ. Microbiol. 74(2008) 2259-2266.[11] S. Sentheshanmuganathan, S.R. Elsden, The mechanism of the formation of tyrosol by Saccharomyces cerevisiae, J. Biochem. 69(1958) 210-218.[12] Y. Bai, H. Bi, Y. Zhuang, L. Chang, C. Tao, X. Liu, X. Zhang, L. Tao, Y. Ma, Production of salidroside in metabolically engineered Escherichia coli, Sci. Rep. 4(2014) 6640.[13] K.A. Datsenko, B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U. S. A. 97(2000) 6640-6645.[14] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K.A. Datsenko, M. Tomita, B.L. Wanner, H. Mori, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:The Keio collection, Mol. Syst. Biol. 2(2006) (2006.0008).[15] T. Baba, H.C. Huan, K. Datsenko, B.L. Wanner, H. Mori, The applications of systematic in-frame, single-gene knockout mutant collection of Escherichia coli K-12, Methods Mol. Biol. 416(2008) 183-194.[16] A. Grote, K. Hiller, M. Scheer, R. Munch, B. Nortemann, D.C. Hempel, D. Jahn, JCat:A novel tool to adapt codon usage of a target gene to its potential expression host, Nucleic Acids Res. 33(2005) 526-531.[17] J. Zeng, S. Spiro, Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli, J. Bacteriol. 195(2013) 5141-5150.[18] G.D. Smith, D.V. Roberts, A. Daday, Affinity chromatography and inhibition of chorismate mutase-prephenate dehydrogenase by derivatives of phenylalanine and tyrosine, Biochem. J. 165(1977) 121.[19] G.S. Hudson, B.E. Davidson, Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12, J. Mol. Biol. 180(1984) 1023.[20] D. Verger, P.T. Carr, D. Ollis, Crystal structure of the N-terminal domain of the TyrR transcription factor responsible for gene regulation of aromatic amino acid biosynthesis and transport in Escherichia coli K12, J. Agric. Food Chem. 60(2012) 979-984.[21] T. Koyanagi, T. Katayama, H. Suzuki, H. Kumagai, Altered oligomerization properties of N316 mutants of Escherichia coli TyrR, J. Bacteriol. 190(2008) 8238-8243.[22] P. James, C. Helen, Y. Ji, The TyrR regulon, Mol. Microbiol. 55(2005) 16-26.[23] S.S. Satapathy, et al., Discrepancy among the synonymous codons with respect to their selection as optimal codon in bacteria, DNA Res. 23(2016) 441-449.[24] X.Z. Chen, L. Zhou, K.M. Tian, A. Kumar, S. Singh, B.A. Prior, Z.X. Wang, Metabolic engineering of Escherichia coli:A sustainable industrial platform for bio-based chemical production, Biotechnol. Adv. 31(2013) 1200-1223.[25] D. Koma, H. Yamanaka, K. Moriyoshi, T. Ohmoto, K. Sakai, Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway, Appl. Environ. Microbiol. 78(2012) 6203-6216.[26] L. Zhou, D.D. Niu, K.M. Tian, X.Z. Chen, B.A. Prior, W. Shen, G.Y. Shi, S. Singh, Z.X. Wang, Genetically switched D-lactate production in Escherichia coli, Metab. Eng. 14(2012) 560-568.[27] E. Deu, J.F. Kirsch, Cofactor-directed reversible denaturation pathways:The cofactorstabilized Escherichia coli aspartate aminotransferase homodimer unfolds through a pathway that differs from that of the apoenzyme, Biochemistry 46(2007) 5819-5829. |