[1] P. Mulchandani, A. Mulchandani, I. Kaneva, W. Chen, Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode, Biosens. Bioelectron. 14(1) (1999) 77-85.[2] S.M. Robatjazi, S.A. Shojaosadati, R. Khalilzadeh, E.V. Farahani, N. Balochi, Immobilization of magnetic modified Flavobacterium ATCC 27551 using magnetic field and evaluation of the enzyme stability of immobilized bacteria, Bioresour. Technol. 104(2012) 6-11.[3] G. Farnoosh, A.M. Latifi, A review on engineering of organophosphorus hydrolase (OPH) enzyme, J. Appl. Biotechnol. Rep. 1(1) (2014) 1-10.[4] Y. Gao, Y.B. Truong, P. Cacioli, P. Butler, I.L. Kyratzis, Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles, Enzym. Microb. Technol. 54(2014) 38-44.[5] R. Erginer, L. Toppare, S. Alkan, U. Bakir, Immobilization of invertase in functionalized copolymer matrices, React. Funct. Polym. 45(3) (2000) 227-233.[6] D. Kayrak-Talay, U. Akman, O. Hortacsu, Glucose oxidase immobilization on conducting polymers in supercritical CO2 environment:an exploratory study, J. Supercrit. Fluids 42(2) (2007) 273-281.[7] S.M. Robatjazi, S.A. Shojaosadati, R. Khalilzadeh, E.V. Farahani, Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles on Flavobacterium ATCC 27551 using the Taguchi method, Biocatal. Biotransform. 28(5-6) (2010) 304-312.[8] X. Li, X. Wang, G. Ye, W. Xia, X. Wang, Polystyrene-based diazonium salt as adhesive:a new approach for enzyme immobilization on polymeric supports, Polymer 51(4) (2010) 860-867.[9] C. Pezzella, M.E. Russo, A. Marzocchella, P. Salatino, G. Sannia, Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation, Biomed. Res. Int. 2014(2014), 308613. (11 pp.).[10] I. Stolarzewicz, E. Biaecka-Florjanczyk, E. Majewska, J. Krzyczkowska, Immobilization of yeast on polymeric supports, Chem. Biochem. Eng. Q. 25(1) (2011) 135-144.[11] D.H. Zhang, L.X. Yuwen, L.J. Peng, Parameters affecting the performance of immobilized enzyme, J. Chem. 2013(2013), 946248. (7 pp.).[12] Y. Liu, J.Y. Chen, Enzyme immobilization on cellulose matrixes, J. Bioact. Compat. Polym. 31(6) (2016) 1-15.[13] S. Varavinit, N. Chaokasem, S. Shobsngob, Immobilization of a thermostable alpha amylase, ScienceAsia 28(2002) 247-251.[14] J. Aniulyte, J. Bryjak, J. Liesiene, Activation of cellulose-based carriers with pentaethylenehexamine, Proc. Est. Acad. Sci. Chem. 55(2) (2006) 61-69.[15] S. Sulaiman, M.N. Mokhtar, M.N. Naim, A.S. Baharuddin, A. Sulaiman, A review:potential usage of cellulose nanofibers (CNFs) for enzyme immobilization via covalent interactions, Appl. Biochem. Biotechnol. 175(4) (2015) 1817-1842.[16] D. Stollner, F.W. Scheller, A. Warsinke, Activation of cellulose membranes with 1,1'-carbonyldiimidazole or 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as a basis for the development of immunosensors, Anal. Biochem. 304(2) (2002) 157-165.[17] S. Nisha, K.S. Arun, N. Gobi, A review on methods, application and properties of immobilized enzyme, Chem. Sci. Rev. Lett. 1(3) (2012) 148-155.[18] X. Liu, L. Lei, Y. Li, H. Zhu, Y. Cui, H. Hu, Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase, Biochem. Eng. J. 56(3) (2011) 142-149.[19] K.A. Brown, Phosphotriesterases of flavobacterium sp, Soil Biol. Biochem. 12(2) (1980) 105-112.[20] S.C. Wu, Y.K. Lia, Application of bacterial cellulose pellets in enzyme immobilization, J. Mol. Catal. B Enzym. 54(3-4) (2008) 103-108.[21] M.N. Belgacem, A. Gandini, Surface modification of cellulose fibres, Polim. Cienc. Tecnol. 15(2) (2005) 114-121.[22] C. Aymard, A. Belarbi, Kinetics of thermal deactivation of enzymes:a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism, Enzym. Microb. Technol. 27(8) (2000) 612-618.[23] F. Secundo, Conformational changes of enzymes upon immobilization, Chem. Soc. Rev. 42(15) (2013) 6250-6261.[24] U. Guzik, K. Hupert-Kocurek, D. Wojcieszynska, Immobilization as a strategy for improving enzyme properties-application to oxidoreductases, Molecules 19(7) (2014) 8995-9018.[25] S. Nigam, S. Mehrotra, B. Vani, R. Mehrotra, Lipase immobilization techniques for biodiesel production:an overview, Int. J. Renew. Energy Biofuels 2014(2014), 664708. (16 pp.).[26] M. Misson, H. Zhang, B. Jin, Nanobiocatalyst advancements and bioprocessing applications, J. R. Soc. Interface 12(102) (2015) 1-20.[27] O. Alptekin, S.S. Tukel, D. Yildirim, D. Alagoz, Covalent immobilization of catalase onto spacer arm attached modified florisil:characterization and application to batch and plug-flow type reactor systems, Enzym. Microb. Technol. 49(6-7) (2011) 547-554.[28] S. Karav, J.L. Cohen, D. Barile, J.M. de Moura Bell, Recent advances in immobilization strategies for glycosidases, Biotechnol. Prog. 33(1) (2017) 104-112.[29] K. Singh, A.M. Kayastha, Optimal immobilization of α-amylase from wheat (Triticum aestivum) onto DEAE-cellulose using response surface methodology and its characterization, J. Mol. Catal. B Enzym. 104(2014) 75-81.[30] N.R. Mohamad, N.H.C. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip. 29(2) (2015) 205-220.[31] D.H. Zhang, Y.Q. Li, L.J. Peng, N. Chen, Lipase immobilization on magnetic microspheres via spacer arms:effect of steric hindrance on the activity, Biotechnol. Bioprocess Eng. 19(5) (2014) 838-843.[32] M.A. Rahman, U. Culsum, A. Kumar, H. Gao, N. Hu, Immobilization of a novel cold active esterase onto Fe3O4~ cellulosenano-composite enhances catalytic properties, Int. J. Biol. Macromol. 87(2016) 488-497.[33] H.C. Chan, C.H. Chia, S. Zakaria, I. Ahmad, A. Dufresne, Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood, Bioresources 8(1) (2013) 785-794.[34] Y. Sun, L. Lin, H. Deng, J. Li, B. He, R. Sun, P. Ouyang, Structural changes of bamboo cellulose in formic acid, Bioresources 3(2) (2008) 297-315.[35] B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, O. Krim, Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite:comparative study, world, J. Environ. Eng. 3(4) (2015) 95-110.[36] T. Kondo, The assignment of IR absorption bands due to free hydroxyl groups in cellulose, Cellulose 4(1997) 281-292.[37] M.M.M. Elnashar, M.E. Hassan, Novel epoxy activated hydrogels for solving lactose intolerance, Biomed. Res. Int. 2014(2014), 817985.[38] E. Cakmakci, O. Danis, S. Demir, Y. Mulazim, M.V. Kahraman, Alpha-amylase immobilization on epoxy containing thiolene photocurable materials, J. Microbiol. Biotechnol. 23(2) (2013) 205-210.[39] S. Boufi, M. Rei Vilar, V. Parra, A.M. Ferraria, A.M. Botelho do Rego, Grafting of porphyrins on cellulose nanometric films, Langmuir 24(14) (2008) 7309-7315.[40] S. Alila, A.M. Ferraria, A.M. Botelho do Rego, S. Boufi, Controlled surface modification of cellulose fibers by amino derivatives using N,N'-carbonyldiimidazole as activator, Carbohydr. Polym. 77(3) (2009) 553-562.[41] Y. Wei, H. Luo, Y. Chang, H. Yu, Z. Shen, Reversible immobilization of cephalosporin C acylase on epoxy supports coated with polyethyleneimine, Biocatal. Biotransform. 33(5-6) (2015) 250-259.[42] S. Li, J. Hu, B. Liu, Use of chemically modified PMMA microspheres for enzyme immobilization, Biosystems 77(1-3) (2004) 25-32.[43] J. Chung, E.T. Hwang, H. Gang, M.B. Gu, Magnetic-separable robust microbeads using a branched polymer for stable enzyme immobilization, React. Funct. Polym. 73(1) (2013) 39-45.[44] H. Wu, C. Zhang, Y. Liang, J. Shi, X. Wang, Z. Jiang, Catechol modification and covalent immobilization of catalase on titania submicrospheres, J. Mol. Catal. B Enzym. 92(2013) 44-50.[45] R.D. Richins, A. Mulchandani, W. Chen, Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes, Biotechnol. Bioeng. 69(6) (2000) 591-596.[46] K. El-Boubbou, D.A. Schofield, C.C. Landry, Enhanced enzymatic thermal stability and activity in functionalized mesoporous silica monitored by 31P NMR, Adv. Healthc. Mater. 1(2) (2012) 183-188.[47] P.B. Dennis, A.Y. Walker, M.B. Dickerson, D.L. Kaplan, R.R. Naik, Stabilization of organophosphorus hydrolase by entrapment in silk fibroin:formation of a robust enzymatic material suitable for surface coatings, Biomacromolecules 13(7) (2012) 2037-2045.[48] J.K. Raynes, F.G. Pearce, S.J. Meade, J.A. Gerrard, Immobilization of organophosphate hydrolase on an amyloid fibril nanoscaffold:towards bioremediation and chemical detoxification, Biotechnol. Prog. 27(2) (2011) 360-367.[49] K.E. LeJeune, A.J. Mesiano, S.B. Bower, J.K. Grimsley, J.R. Wild, A.J. Russell, Dramatically stabilized phosphotriesterase-polymers for nerve agent degradation, Biotechnol. Bioeng. 54(2) (1997) 105-114.[50] B. Karagoz, G. Bayramoglu, B. Altintas, N. Bicak, M.Y. Arica, Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide:immobilized laccase for benzidine based dyes degradation, Bioresour. Technol. 102(13) (2011) 6783-6790.[51] P.M.B. Chagas, J.A. Torres, M.C. Silva, F.G.E. Nogueira, C.D. Santos, A.D. Correa, Catalytic stability of turnip peroxidase in free and immobilized form on chitosan beads, Int. J. Curr. Microbiol. Appl. Sci. 3(11) (2014) 576-595.[52] S.R. Caldwell, F.M. Raushel, Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta, Biotechnol. Bioeng. 37(2) (1991) 103-109.[53] S.M. Robatjazi, M. Reihani, S. Mahboudi, S.M. Hasanpour, M.A.N. Khalili, Immobilization of organophosphorus hydrolase enzyme on ferric magnetic nanoparticles and investigation of immobilized enzyme stability, J. Microbiol. Biotechnol. Food Sci. 6(6) (2017) 1295-1299.[54] M.M. Milani, A.S. Lotfi, A. Mohsenifar, P. Mikaili, N. Kamelipour, J. Dehghan, Enhancing organophosphorus hydrolase stability by immobilization on chitosan beads containing glutaraldehyde, Res. J. Environ. Toxicol. 9(1) (2015) 34-44.[55] S.K. Falahati-Pour, A.S. Lotfi, G. Ahmadian, A. Baghizadeh, Covalent immobilization of recombinant organophosphorus hydrolase on spores of Bacillus subtilis, J. Appl. Microbiol. 118(4) (2015) 976-988.[56] H.Y. Zeng, X.Y. Liu, P. He, D.H. Peng, B. Fan, K. Xia, Lipase adsorption on woven nylon-6 membrane:optimization, kinetic and thermodynamic analyses, Biocatal. Biotransform. 32(3) (2014) 188-197.[57] E. Fatarella, D. Spinelli, M. Ruzzante, R. Pogni, Nylon 6 film and nanofiber carriers:preparation and laccase immobilization performance, J. Mol. Catal. B Enzym. 102(2014) 41-47.[58] M. Kapoor, R. Rajagopal, Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorous hydrolase, Int. Biodeterior. Biodegrad. 65(6) (2011) 896-901.[59] X.Y. Yan, Y.J. Jiang, S.P. Zhang, J. Gao, Y.F. Zhang, Dual-functional OPH-immobilized polyamide nanofibrous membrane for effective organophosphorus toxic agents protection, Biochem. Eng. J. 98(2015) 47-55.[60] S. Rauf, A. Ihsan, K. Akhtar, M.A. Ghauri, M. Rahman, M.A. Anwar, A.M. Khalid, Glucose oxidase immobilization on a novel cellulose acetate-polymethylmethacrylate membrane, J. Biotechnol. 121(3) (2006) 351-360.[61] R. Karami, A. Mohsenifar, S.M. Mesbah Namini, N. Kamelipour, T. Rahmani-Cherati, T. Roodbar Shojaei, M. Tabatabaei, A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on Au nanoparticles, Prep. Biochem. Biotechnol. 46(6) (2016) 559-566.[62] V.A. Pedrosa, S. Paliwal, S. Balasubramanian, D. Nepal, V. Davis, J. Wild, E. Ramanculov, A. Simonian, Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes, Colloids Surf. B:Biointerfaces 77(1) (2010) 69-74. |