[1] |
Z. Zhang, J. Cai, F. Chen, H. Li, W. Zhang, W. Qi, Progress in enhancement of CO2 absorption by nanofluids:A mini review of mechanisms and current status, Renew. Energy 118(2018) 527-535.
|
[2] |
M. Rezakazemi, I. Heydari, Z. Zhang, Hybrid systems:Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas, J. CO2 Util. 18(2017) 362-369.
|
[3] |
M. Rahmati-Rostami, C. Ghotbi, M. Hosseini-Jenab, A.N. Ahmadi, A.H. Jalili, Solubility of H2S in ionic liquids[hmim] [PF6],[hmim] [BF4], and[hmim] [Tf2N], J. Chem. Thermodyn. 41(2009) 1052-1055.
|
[4] |
R.D. Rogers, K.R. Seddon, Chemistry. Ionic liquids-Solvents of the future? Science 302(2003) 792-793.
|
[5] |
Z. Li, X. Zhang, H. Dong, H. Gao, S. Zhang, J. Li, C. Wang, Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids, RSC Adv. 5(2015) 81362-81370.
|
[6] |
Y. Huang, Y. Zhao, S. Zeng, X. Zhang, S. Zhang, Density prediction of mixtures of ionic liquids and molecular solvents using two new generalized models, Ind. Eng. Chem. Res. 53(2014) 15270-15277.
|
[7] |
D. Bao, X. Zhang, H. Dong, Z. Ouyang, X. Zhang, S. Zhang, Numerical simulations of bubble behavior and mass transfer in CO2 capture system with ionic liquids, Chem. Eng. Sci. 135(2015) 76-88.
|
[8] |
A. Eslamimanesh, F. Gharagheizi, A.H. Mohammadi, D. Richon, Artificial Neural Network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids, Chem. Eng. Sci. 66(2011) 3039-3044.
|
[9] |
L.A. Blanchard, H. Dan, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature 399(1999) 28-29.
|
[10] |
X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Carbon capture with ionic liquids:Overview and progress, Energy Environ. Sci. 5(2012) 6668-6681.
|
[11] |
S. Zeng, H. He, H. Gao, X. Zhang, J. Wang, Y. Huang, S. Zhang, Improving SO2 capture by tuning functional groups on the cation of pyridinium-based ionic liquids, RSC Adv. 5(2014) 2470-2478.
|
[12] |
K. Huang, X.M. Zhang, Y. Xu, Y.T. Wu, X.B. Hu, Y. Xu, Protic ionic liquids for the selective absorption of H2S from CO2:Thermodynamic analysis, AIChE J. 60(2014) 4232-4240.
|
[13] |
F.Y. Jou, A.E. Mather, Solubility of hydrogen sulfide in[bmim] [PF6], Int. J. Thermophys. 28(2007) 490.
|
[14] |
C.S. Pomelli, C. Chiappe, A. Vidis, G. Laurenczy, P.J. Dyson, Influence of the interaction between hydrogen sulfide and ionic liquids on solubility:Experimental and theoretical investigation, J. Phys. Chem. B 111(2007) 13014-13019.
|
[15] |
H.Q.N. Gunaratne, P. Nockemann, K.R. Seddon, Ionic liquids for efficient hydrogen sulfide and thiol scavenging, Green Chem. 16(2014) 2411-2417.
|
[16] |
Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chem. Rev. 114(2014) 1289-1326.
|
[17] |
A. Shafiei, M.A. Ahmadi, S.H. Zaheri, A. Baghban, A. Amirfakhrian, R. Soleimani, Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach, J. Supercrit. Fluids 95(2014) 525-534.
|
[18] |
M.A. Ahmadi, B. Pouladi, Y. Javvi, S. Alfkhani, R. Soleimani, Connectionist technique estimates H2S solubility in ionic liquids through a low parameter approach, J. Supercrit. Fluids 97(2015) 81-87.
|
[19] |
M.A. Sedghamiz, A. Rasoolzadeh, M.R. Rahimpour, The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids, J. CO2 Util. 9(2015) 39-47.
|
[20] |
M.A. Ahmadi, R. Haghbakhsh, R. Soleimani, M.B. Bajestani, Estimation of H2S solubility in ionic liquids using a rigorous method, J. Supercrit. Fluids 92(2014) 60-69.
|
[21] |
A. Klamt, Volker Jonas, A. Thorsten Burger, J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys. Chem. A 102(1998) 5074-5085.
|
[22] |
A. Klamt, F. Eckert, COSMO-RS:A novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172(2000) 43-72.
|
[23] |
F. Eckert, A. Klamt, Fast solvent screening via quantum chemistry:COSMO-RS ap-proach, AIChE J. 48(2002) 369-385.
|
[24] |
M. Diedenhofen, A. Klamt, COSMO-RS as a tool for property prediction of IL mixtures -A review, Fluid Phase Equilib. 294(2010) 31-38.
|
[25] |
X. Zhang, Z. Liu, W. Wang, Screening of ionic liquids to capture CO2 by COSMO-RS and experiments, AIChE J. 54(2008) 2717-2728.
|
[26] |
K.Z. Sumon, A. Henni, Ionic liquids for CO2 capture using COSMO-RS:Effect of structure, properties and molecular interactions on solubility and selectivity, Fluid Phase Equilib. 310(2011) 39-55.
|
[27] |
J. Palomar, M. Gonzalezmiquel, A. Polo, F. Rodriguez, Understanding the physical absorption of CO2 in ionic liquids using the COSMO-RS method, Ind. Eng. Chem. Res. 50(2011) 3452-3463.
|
[28] |
J. Palomar, M. Gonzalez-Miquel, J. Bedia, F. Rodriguez, J.J. Rodriguez, Task-specific ionic liquids for efficient ammonia absorption, Sep. Purif. Technol. 82(2011) 43-52.
|
[29] |
G. Garcia, M. Atilhan, S. Aparicio, A density functional theory insight towards the rational design of ionic liquids for SO2 capture, Phys. Chem. Chem. Phys. 17(2015) 13559.
|
[30] |
Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, New fragment contribution-corresponding states method for physicochemical properties prediction of ionic liquids, AIChE J. 59(2013) 1348-1359.
|
[31] |
F. Gharagheizi, G.R. Salehi, Prediction of enthalpy of fusion of pure compounds using an Artificial Neural Network-Group Contribution method, Thermochim. Acta 521(2011) 37-40.
|
[32] |
F. Gharagheizi, A. Eslamimanesh, A.H. Mohammadi, D. Richon, Determination of critical properties and acentric factors of pure compounds using the artificial neural network group contribution algorithm, J. Chem. Eng. Data 56(2011) 2460-2476.
|
[33] |
H. Handy, A. Santoso, A. Widodo, J. Palgunadi, T.H. Soerawidjaja, A. Indarto, H2S-CO2 separation using room temperature ionic liquid[BMIM] [Br], Sep. Sci. Technol. 49(2014) 2079-2084.
|
[34] |
A.H. Jalili, A. Mehdizadeh, M. Shokouhi, A.N. Ahmadi, M. Hosseini-Jenab, F. Fateminassab, Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate, J. Chem. Thermodyn. 42(2010) 1298-1303.
|
[35] |
M.B. Shiflett, A.M.S. Niehaus, A. Yokozeki, Separation of CO2 and H2S using roomtemperature ionic liquid[bmim] [MeSO4], Fluid Phase Equilib. 294(2010) 105-113.
|
[36] |
M. Shokouhi, M. Adibi, A.H. Jalili, M. Hosseinijenab, A. Mehdizadeh, Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, J. Chem. Eng. Data 55(2010) 1663-1668.
|
[37] |
H. Sakhaeinia, A.H. Jalili, V. Taghikhani, A.A. Safekordi, Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim] [PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ([emim] [Tf2N]), J. Chem. Eng. Data 55(2010) 5839-5845.
|
[38] |
A.H. Jalili, M. Rahmatirostami, C. Ghotbi, M. Hosseinijenab, A.N. Ahmadi, Solubility of H2S in ionic liquids[bmim] [PF6],[bmim] [BF4], and[bmim] [Tf2N], J. Chem. Thermodyn. 41(2009) 1052-1055.
|
[39] |
A.H. Jalili, M. Safavi, C. Ghotbi, A. Mehdizadeh, M. Hosseinijenab, V. Taghikhani, Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide, J. Phys. Chem. B 116(2012) 2758-2774.
|
[40] |
M. Safavi, C. Ghotbi, V. Taghikhani, A.H. Jalili, A. Mehdizadeh, Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate:Experimental and modelling, J. Chem. Thermodyn. 65(2013) 220-232.
|
[41] |
K. Huang, D.N. Cai, Y.L. Chen, Y.T. Wu, X.B. Hu, Z.B. Zhang, Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption, AIChE J. 59(2013) 2227-2235.
|
[42] |
A.H. Jalili, M. Shokouhi, G. Maurer, M. Hosseini-Jenab, Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, J. Chem. Thermodyn. 67(2013) 55-62.
|
[43] |
J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers, Kluwer Academic Publishers, 1999.
|
[44] |
A. Eslamimanesh, F. Gharagheizi, M. Illbeigi, A.H. Mohammadi, A. Fazlali, D. Richon, Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen + water soluble organic promoters using Support Vector Machine algorithm, Fluid Phase Equilib. 316(2012) 34-45.
|
[45] |
A. Hemmati-Sarapardeh, A. Shokrollahi, A. Tatar, F. Gharagheizi, A.H. Mohammadi, A. Naseri, Reservoir oil viscosity determination using a rigorous approach, Fuel 116(2014) 39-48.
|
[46] |
H. Li, Z. Zhang, Z. Liu, Application of artificial neural networks for catalysis:A review, Catalysts 7(2017) 306.
|
[47] |
K. Pelckmans, J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, L. Lukas, B. Hamers, B.D. Moor, LS-SVMlab:A MATLAB/C Toolbox for Least Squares Support Vector Machines, Tutorial Kuleuven, 2002.
|
[48] |
A. Perez-Salado Kamps, D. Tuma, J. Xia, G. Maurer, Solubility of CO2 in the ionic liquid[bmim] [PF6], J. Chem. Eng. Data 48(2003) 746-749.
|
[49] |
H.R. Amedi, A. Baghban, M.A. Ahmadi, Evolving machine learning models to predict hydrogen sulfide solubility in the presence of various ionic liquids, J. Mol. Liq. 216(2016) 411-422.
|
[50] |
A. Baghban, M.N. Kardani, A.H. Mohammadi, Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models, Fuel 232(2018) 620-631.
|
[51] |
A. Baghban, M. Adelizadeh, On the determination of cetane number of hydrocarbons and oxygenates using Adaptive Neuro Fuzzy Inference System optimized with evolutionary algorithms, Fuel 230(2018) 344-354.
|
[52] |
A. Baghban, J. Sasanipour, Z. Zhang, A new chemical structure-based model to estimate solid compound solubility in supercritical CO2, J. CO2 Util. 26(2018) 262-270.
|