[1] V. Lam, G.C. Li, C.J. Song, J.W. Chen, C. Fairbridge, R. Hui, J.J. Zhang, A review of electrochemical desulfurization technologies for fossil fuels, Fuel Process. Technol. 98(2012) 30-38. [2] D.X. Li, J.S. Gao, G.X. Yue, Catalytic oxidation and kinetics of oxidation of coal-derived pyrite by electrolysis, Fuel Process. Technol. 82(2003) 75-85. [3] R.W. Coughlin, M. Farooque, Hydrogen production from coal, water and electrons, Nature 279(1979) 301-303. [4] M. Farooque, R.W. Coughlin, Anodic coal reaction lowers energy consumption of metal electrowinning, Nature 280(1979) 666-668. [5] P.G. Wapner, S.B. Lalvani, G. Awad, Organic sulfur removal from coal by electrolysis in alkaline media, Fuel Process. Technol. 18(1988) 25-36. [6] Y.D. Abreu, P.A. Mqreuez, G.G. Botte, Characterization of electrooxidized Pittsburgh No.8 coal, Fuel 86(2007) 573-584. [7] X.Z. Gong, M.Y. Wang, Z. Wang, Z.C. Guo, Desulfurization of electrolyzed coal water slurry in HCl system with ionic liquids addition, Fuel Process. Technol. 99(2012) 6-12. [8] X.Z. Gong, L. Ge, Z. Wang, S.Y. Zhuang, Y.H. Wang, L.H. Ren, M.Y. Wang, Desulfurization from bauxite water slurry (BWS) electrolysis, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 47(1) (2016) 649-656. [9] L. Ge, X.Z. Gong, Z. Wang, L.X. Zhao, Y.H. Wang, M.Y. Wang, Sulfur removal from bauxite water slurry (BWS) electrolysis intensified by ultrasonic, Ultrason. Sonochem. 26(2015) 142-148. [10] X.Z. Gong, S.Y. Zhuang, L. Ge, Z. Wang, M.Y. Wang, Desulfurization kinetics and mineral phase evolution of bauxite water slurry (BWS) electrolysis, Int. J. Miner. Process. 139(2015) 17-24. [11] E. Ahlberg, K.S.E. Forssberg, X. Wang, The surface oxidation of pyrite in alkaline solution, J. Appl. Electrochem. 20(1990) 1033-1039. [12] S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Advanced alkaline water electrolysis, Electrochim. Acta 82(2012) 384-391. [13] A. Schippers, T. Rohwerder, W. Sand, Intermediary sulfur compounds in pyrite oxidation:Implications for bioleaching and biodepyritization of coal, Appl. Microbiol. Biotechnol. 52(1999) 104-110. [14] R. Murphy, D.R. Strongin, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep. 64(2009) 1-45. [15] A.P. Chandra, A.R. Gerson, The mechanisms of pyrite oxidation and leaching:A fundamental perspective, Surf. Sci. Rep. 65(2010) 293-315. [16] A. Demoz, C. Khulbe, C. Fairbridge, S. Petrovic, Iodide mediated electrolysis of acidic coke/coal suspension, J. Appl. Electrochem. 38(2008) 845-851. [17] L. Liu, M.Y. Wang, Z. Wang, Y. Zhang, The corrosion resistance of Ni anode and Ga electrowinning in alkaline sulfide solutions, J. Appl. Electrochem. 45(2015) 1255-1263. [18] S.M. Abd El Haleem, E.E. Abd El Aal, Electrochemical reduction of the corrosion products formed on copper surface in alkaline-sulphide solutions, J. Alloys Compd. 432(2007) 205-210. [19] S.A. Awe, J.E. Sundkvist, Å. Sandström, Formation of sulphur oxyanions and their influence on antimony electrowinning from sulphide electrolytes, Miner. Eng. 53(2013) 39-47. [20] S.M. Sayed, E.A. Ashour, G.I. Youssef, Effect of sulfide ions on the corrosion behaviour of Al-brass and Cu10Ni alloys in salt water, Mater. Chem. Phys. 78(2003) 825-834. [21] M. Srinivas, S.K. Adapaka, L. Neelakantan, Solubility effects of Sn and Ga on the microstructure and corrosion behavior of Al-Mg-Sn-Ga alloy anodes, J. Alloys Compd. 683(2016) 647-653. [22] P. Patil, Y.D. Abreu, G.G. Botte, Electrooxidation of coal slurries on different electrode materials, J. Power Sources 158(2006) 368-377. [23] R.H. Yin, Y.G. Zhao, S.Y. Lu, H.M. Wang, W.M. Cao, Q.B. Fan, Electrocatalytic oxidation of coal on Ti-supported metal oxides coupled with liquid catalysts for H2 production, Electrochim. Acta 55(2009) 46-51. [24] P. Yu, G.G. Botte, Bimetallic platinum-iron electrocatalyst supported on carbon fibers for coal electrolysis, J. Power Sources 274(2015) 165-169. [25] S. Liu, W. Zhou, F. Tang, B.F. Guo, Y.T. Zhang, R.H. Yin, Pretreatment of coal by ionic liquids towards coal electrolysis liquefaction, Fuel 160(2015) 495-501. [26] J.N. Al-Hajji, M.R. Reda, The corrosion of copper-nickel alloys in sulfide-polluted seawater:The effect of sulfide concentration, Corros. Sci. 34(1) (1993) 163-177. [27] T. Xingying, W. Shuzhong, X. Donghai, G. Yanmeng, Z. Jie, W. Yuzhen, Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen, Ind. Eng. Chem. Res. 52(2013) 18241-18250. [28] A. Frank, C. Christodoulos, B.M. Mogens, Alkaline electrolysis cell at high temperature and pressure of 250℃ and 42 bar, J. Power Sources 229(2013) 22-31. [29] S. Fajardo, D.M. Bastidas, M.P. Ryan, M. Criado, D.S. Mcphail, R.J.H. Morris, J.M. Bastidas, Low energy SIMS characterization of passive oxide films formed on a low-nickel stainless steel in alkaline media, Appl. Surf. Sci. 288(2014) 423-429. [30] L. Choudhary, W. Wang, A. Alfantazi, Electrochemical corrosion of stainless steel in thiosulfate solutions relevant to gold leaching, Metall. Mater. Trans. A 47(1) (2016) 314-325. [31] M. Maysam, A. Akram, Evaluation of manganese dioxide deposition on lead-based electrowinning anodes, Hydrometallurgy 159(2016) 28-39. [32] J.J. Mcginnity, M.J. Nicol, The role of silver in enhancing the electrochemical activity of lead and lead-silver alloy anodes, Hydrometallurgy 144(2014) 133-139. [33] A.J. Lü, Y.Q. Shen, X.Z. Gong, Z. Wang, Y.H. Wang, M.Y. Wang, Effects of electrolyte recycling on desulfurization from bauxite water slurry electrolysis, Trans. Nonferrous Metals Soc. China 26(2016) 1714-1720. [34] N.K. Awad, E.A. Ashour, A.S. Fouda, N.K. Allam, Effect of alloying elements on the electrochemical behavior of Cu-Ni-Zn ternary system in sulfide-polluted saltwater, Appl. Surf. Sci. 307(2014) 621-630. [35] X.Y. Tang, S.Z. Wang, D.H. Xu, Y.M. Gong, J. Zhang, Y.Z. Wang, Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen, Ind. Eng. Chem. Res. 52(2013) 18241-18250. [36] S.M.A. El Haleem, E.E.A. El Aal, Electrochemical behaviour of iron in alkaline sulphide solutions, Corros. Eng. Sci. Technol. 43(2008) 173-178. [37] K.M. Ismail, A.M. Fathi, W.A. Badawy, The influence of Ni content on the stability of copper-nickel alloys in alkaline sulphate solutions, J. Appl. Electrochem. 34(2004) 823-831. [38] L. Liu, M.Y. Wang, Z. Wang, Y. Zhang, Corrosion behavior of 316L stainless steel anode in alkaline sulfide solutions and the consequent influence on Ga electrowinning, Hydrometallurgy 157(2015) 285-291. [39] C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta 39(11/12) (1994) 1857-1862. [40] X.Y. Li, Y.H. Cui, Y.J. Feng, Z.M. Xie, J.D. Gu, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res. 39(2005) 1972-1981. [41] A.M. Polcaro, S. Palmas, F. Renoldi, M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorphenol for wastewater treatment, J. Appl. Electrochem. 29(1999) 147-151. [42] S.T. Zhong, W. Zhao, C. Sheng, W.J. Xu, Z.M. Zong, X.Y. Wei, Mechanism for removal of organic sulfur from guiding subbituminous coal by electrolysis, Energy Fuel 25(2011) 3687-3692. [43] M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev. 109(2009) 6541-6569. [44] Y. Katayama, Y. Toshimitsu, T. Miura, Electrode kinetics of the redox reaction of tris (2, 2'-bipyridine) nickel complexes in an ionic liquid, Electrochim. Acta 131(2014) 36-41. [45] Q. Liu, J.M. Yu, Y.H. Xu, J.D. Wang, L. Ying, X.X. Song, G.D. Zhou, J.M. Chen, Bioelectrocatalytic dechlorination of trichloroacetic acid at gel-immobilized hemoglobin on multiwalled carbon nanotubes modified graphite electrode:Kinetic modeling and reaction pathways, Electrochim. Acta 92(2013) 153-160. [46] R. Padilla, O. Jerez, M.C. Ruiz, Kinetics of the pressure leaching of enargite in FeSO4-H2SO4-O2 media, Hydrometallurgy 158(2015) 49-55. [47] H.Y. Sun, M. Chen, L.C. Zou, R.B. Shu, R.M. Ruan, Study of the kinetics of pyrite oxidation under controlled redox potential, Hydrometallurgy 155(2015) 13-19. [48] H. Long, D.G. Dixon, Pressure oxidation of pyrite in sulfuric acid media:A kinetic study, Hydrometallurgy 73(2004) 335-349. |