SCI和EI收录∣中国化工学会会刊

中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (4): 965-978.DOI: 10.1016/j.cjche.2018.07.015

• Materials and Product Engineering • 上一篇    

Synthesis, characterization and electrochemical evaluation of anticorrosion property of a tetrapolymer for carbon steel in strong acid media

Shamsuddeen A. Haladu1, Saviour A. Umoren2, Shaikh A. Ali3, Moses M. Solomon2, Abdul-Rashid I. Mohammed4   

  1. 1 Department Basic Sciences and Humanities, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia;
    2 Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
    3 Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
    4 Centre for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • 收稿日期:2018-05-15 修回日期:2018-07-04 出版日期:2019-04-28 发布日期:2019-06-14
  • 通讯作者: Saviour A. Umoren

Synthesis, characterization and electrochemical evaluation of anticorrosion property of a tetrapolymer for carbon steel in strong acid media

Shamsuddeen A. Haladu1, Saviour A. Umoren2, Shaikh A. Ali3, Moses M. Solomon2, Abdul-Rashid I. Mohammed4   

  1. 1 Department Basic Sciences and Humanities, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia;
    2 Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
    3 Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
    4 Centre for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • Received:2018-05-15 Revised:2018-07-04 Online:2019-04-28 Published:2019-06-14
  • Contact: Saviour A. Umoren

摘要: A novel tetrapolymer (TP) consisting of carboxylate, sulphonate, phosphonate and sulfur dioxide based comonomers was synthesized using Butler cyclopoymerization technique. The synthesized tetrapolymer was characterized using FTIR, 1H-NMR, 13C NMR and elemental analysis. The performance of the tetrapolymer as a corrosion inhibitor for St37 carbon steel in 15% HCl and 15% H2SO4 acid media was assessed using electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), potentiodynamic polarization (PDP) and electrochemical frequency modulation (EFM) techniques. The influence of addition of a small amount of KI on the corrosion inhibition efficiency of TP was also assessed. Results obtained showed that the tetrapolymer moderately inhibited the corrosion of St37 steel in the acid media with protection efficiency of 79.5% and 61.1% at the optimum concentration of 1000 mg·L-1 studied in HCl and H2SO4 media respectively. On addition of 5 mmol·L-1 KI to the optimum tetrapolymer concentration, the protection efficiency was upgraded to 90.6% and 93.5% in HCl and H2SO4 environment, respectively. The enhanced performance of the polymer in the presence of KI is due to synergistic action deduced from synergism parameter (S1) which was found to be greater than unity. The tetrapolymer afforded the corrosion inhibition of St37 steel in the acid media by virtue of adsorption of the polymer molecules on the steel surface which was confirmed by ATR-FTIR analysis of the adsorbed film extracted from the steel surface. TP + KI formed complex with St37 steel surface in H2SO4 solution but not in HCl solution.

关键词: Tetrapolymer, Metal, Acid corrosion, Corrosion inhibition, Adsorption, Synergism

Abstract: A novel tetrapolymer (TP) consisting of carboxylate, sulphonate, phosphonate and sulfur dioxide based comonomers was synthesized using Butler cyclopoymerization technique. The synthesized tetrapolymer was characterized using FTIR, 1H-NMR, 13C NMR and elemental analysis. The performance of the tetrapolymer as a corrosion inhibitor for St37 carbon steel in 15% HCl and 15% H2SO4 acid media was assessed using electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), potentiodynamic polarization (PDP) and electrochemical frequency modulation (EFM) techniques. The influence of addition of a small amount of KI on the corrosion inhibition efficiency of TP was also assessed. Results obtained showed that the tetrapolymer moderately inhibited the corrosion of St37 steel in the acid media with protection efficiency of 79.5% and 61.1% at the optimum concentration of 1000 mg·L-1 studied in HCl and H2SO4 media respectively. On addition of 5 mmol·L-1 KI to the optimum tetrapolymer concentration, the protection efficiency was upgraded to 90.6% and 93.5% in HCl and H2SO4 environment, respectively. The enhanced performance of the polymer in the presence of KI is due to synergistic action deduced from synergism parameter (S1) which was found to be greater than unity. The tetrapolymer afforded the corrosion inhibition of St37 steel in the acid media by virtue of adsorption of the polymer molecules on the steel surface which was confirmed by ATR-FTIR analysis of the adsorbed film extracted from the steel surface. TP + KI formed complex with St37 steel surface in H2SO4 solution but not in HCl solution.

Key words: Tetrapolymer, Metal, Acid corrosion, Corrosion inhibition, Adsorption, Synergism