[1] P. Tolvanen, P. Mäki-Arvela, A.B. Sorokin, et al., Kinetics of starch oxidation using hydrogen peroxide as an environmentally friendly oxidant and an iron complex as a catalyst, Chem. Eng. J. 154(1) (2009) 52-59. [2] H.S. Guan, G.X. Li, N.Y. Zhang, Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant, Acta Astronaut. 144(2018) 119-125. [3] Z. Li, X. Guo, X. Feng, et al., An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by adapted Candida tropicalis, Chem. Eng. J. 263(2015) 249-256. [4] R.L. Sackheim, R.K. Masse, Green propulsion advancement:challenging the maturity of monopropellant hydrazine, J. Propuls. Power 30(2) (2014) 265-276. [5] V. Losetty, B.K. Chennuri, R.L. Gardas, Synthesis, spectroscopic characterization and acoustic, volumetric, transport and thermal properties of hydroxyl ammonium based ionic liquids, J. Chem. Thermodyn. 92(2016) 175-181. [6] H. Kang, D. Jang, S. Kwon, Demonstration of 500 N scale bipropellant thruster using non-toxic hypergolic fuel and hydrogen peroxide, Aerosp. Sci. Technol. 49(2016) 209-214. [7] M.J. Tummers, A.E.D.M. van der Heijden, E.H. van Veen, Selection of burning rate modifiers for hydrazinium nitroformate, Combust. Flame 159(2) (2012) 882-886. [8] Z. Yao, W. Zhang, M. Wang, et al., Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion, Aerosp. Sci. Technol. 45(2015) 140-149. [9] K. Anflo, T. Gronland, N. Wingborg, Development and testing of ADN-based monopropellants in small rocket engines, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, ARC, USA 2000, p. 3162. [10] N. Wingborg, M. Johansson, L. Bodin, Initial Development of a Laboratory Rocket Thruster for ADN-Based Liquid Monopropellants, Swedish Defence Research Agency, 2006. [11] A. Rahman, J. Chin, F. Kabir, et al., Characterisation and thrust measurements from electrolytic decomposition of ammonium dinitramide (ADN) based liquid monopropellant FLP-103 in MEMS thrusters, Chin. J. Chem. Eng. 26(9) (2018) 1992-2002. [12] M.Y. Nagamachi, J.I.S. Oliveira, A.M. Kawamoto, et al., ADN-the new oxidizer around the corner for an environmentally friendly smokeless propellant, J. Aerosp. Technol. Manag. 1(2) (2009) 153-160. [13] S. Persson, S. Veldman, P. Bodin, PRISMA-a formation flying project in implementation phase, Acta Astronaut. 65(9) (2009) 1360-1374. [14] M. Lange, M. Holzwarth, G. Schulte, et al., Feasibility Study and Performance Assessment of a Myriade Propulsion Module with an ADN-Based Green Monopropellant, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, ARC, USA 2010, p. 6663. [15] N. Pokrupa, K. Anflo, O. Svensson, Spacecraft system level design with regards to incorporation of a new green propulsion system, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, ARC, USA 2011, p. 6129. [16] B. Crowe, K. Anflo, In-space demonstration of high performance green propulsion (HPGP) and its impact on small satellites, 25th Annual AIAA/USU Conference on Small Satellite 2011, pp. 1-7. [17] M. Negri, M. Wilhelm, C. Hendrich, et al., New technologies for ammonium dinitramide based monopropellant thrusters-the project RHEFORM, Acta Astronaut. 143(2018) 105-117. [18] P. Friedhoff, A. Hawkins, J. Carrico, et al., On-orbit operation and performance of ammonium dinitramide (ADN) based high performance green propulsion (HPGP) systems, 53rd AIAA/SAE/ASEE Joint Propulsion Conference 2017, p. 4673. [19] P. Bodin, R. Noteborn, R. Larsson, et al., System test results from the GNC experiments on the Prisma in-orbit test bed, Acta Astronaut. 68(7) (2011) 862-872. [20] N. Wingborg, A. Larsson, M. Elfsberg, et al., Characterization and ignition of ADN-based liquid monopropellants, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 2005, p. 4468. [21] T.A. Grönland, K. Anflo, G. Bergman, et al., ADN-Based Propulsion for Spacecraft,-Key Requirements and Experimental Verification, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, ARC, USA 2004, p. 4145. [22] K. Farhat, C. Kappenstein, Y. Batonneau, Thermal and catalytic decomposition of AN-, ADN and HNF-based ionic monopropellants, AIAA 2008-4938, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008. [23] R. Amrousse, K. Hori, W. Fetimi, et al., HAN and ADN as liquid ionic monopropellants:thermal and catalytic decomposition processes, Appl. Catal. B Environ. 127(2012) 121-128. [24] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48(1952) 89-94. [25] P.R.A. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows, 30th Aerospace Sciences Meeting and Exhibit 1992, p. 439. [26] F.C. Zhuang, Theory, Modeling and Applications of Spray Combustion in LRE, National University of Defence Technology Publishing House, Changsha, China, 1995. [27] J. Yan, K. Luo, J. Fan, et al., Direct numerical simulation of particle dispersion in a turbulent jet considering inter-particle collisions, Int. J. Multiphase Flow 34(8) (2008) 723-733. [28] Y. Mahmoudi, N. Karimi, Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition, Int. J. Heat Mass Transf. 68(2014) 161-173. [29] R. Amri, D. Gibbon, T. Rezoug, The design, development and test of one newton hydrogen peroxide monopropellant thruster, Aerosp. Sci. Technol. 25(1) (2013) 266-272. [30] O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, 1962. [31] A.S. Tompa, Thermal analysis of ammonium dinitramide (ADN), Thermochim. Acta 357(2000) 177-193. [32] L. Jing, X. You, J. Huo, et al., Experimental and numerical studies of ammonium dinitramide based liquid propellant combustion in space thruster, Aerosp. Sci. Technol. 69(2017) 161-170. [33] R. Gunawan, D. Zhang, Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite, J. Hazard. Mater. 165(1) (2009) 751-758. [34] O.P. Korobeinichev, T.A. Bolshova, A.A. Paletsky, Modeling the chemical reactions of ammonium dinitramide (ADN) in a flame, Combust. Flame 126(1) (2001) 1516-1523. [35] C.X. Xiao, N. Yan, M. Zou, et al., NO2-catalyzed deep oxidation of methanol:experimental and theoretical studies, J. Mol. Catal. A Chem. 252(1) (2006) 202-211. [36] F. Vogel, J.L.D.N. Blanchard, P.A. Marrone, et al., Critical review of kinetic data for the oxidation of methanol in supercritical water, J. Supercrit. Fluids 34(3) (2005) 249-286. [37] D.I. Foustoukos, J.C. Stern, Oxidation pathways for formic acid under low temperature hydrothermal conditions:implications for the chemical and isotopic evolution of organics on Mars, Geochim. Cosmochim. Acta 76(2012) 14-28. [38] T. Zhang, G. Li, Y. Yu, et al., Numerical simulation of ammonium dinitramide (ADN)-based non-toxic aerospace propellant decomposition and combustion in a monopropellant thruster, Energy Convers. Manag. 87(2014) 965-974. [39] ANSYS, Inc., ANSYS Academic Research, Release 14.5, Help System, Programmer's Reference, 2012. [40] B. He, L. Zhu, J. Wang, et al., Computational fluid dynamics based retrofits to reheater panel overheating of no. 3 boiler of Dagang Power Plant, Comput. Fluids 36(2) (2007) 435-444. [41] Zhao-pu Yao, Xin Miao, Jun Chen, et al., Experimental investigation on a green, storable, aerospace thruster with ADN-based liquid propellants, J. Propuls. Technol. 35(9) (2014) 1247-1252. |