[1] Z. Li, X. Ma, H. Xin, Feature engineering of machine-learning chemisorption models for catalyst design, Catal. Today 280(2017) 232-238. [2] M. Spellings, S.C. Glotzer, Machine learning for crystal identification and discovery, AIChE J. 64(6) (2018) 2198-2206. [3] J. J Cai, J. Luo, S. Wang, et al., Feature selection in machine learning:A new perspective, Neurocomputing 300(2018) 70-79. [4] Z. Geng, K. Wu, Y. Han, Research and application of FLANN neural network based on analytic hierarchy process, CIESC J. 67(3) (2016) 805-811(in Chinese). [5] J. Yu, M.M. Rashid, A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis, AIChE J. 59(7) (2013) 2348-2365. [6] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3(Mar) (2003) 1157-1182. [7] R. Cai, Z. Hao, X. Yang, et al., An efficient gene selection algorithm based on mutual information, Neurocomputing 72(4-6) (2009) 991-999. [8] F. Amiri, M.M.R. Yousefi, C. Lucas, et al., Mutual information-based feature selection for intrusion detection systems, J. Netw. Comput. Appl. 34(4) (2011) 1184-1199. [9] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell. 27(8) (2005) 1226-1238. [10] P.A. Estévez, M. Tesmer, C.A. Perez, et al., Normalized mutual information feature selection, IEEE Trans. Neural Netw. 20(2) (2009) 189-201. [11] F. Fleuret, Fast binary feature selection with conditional mutual information, J. Mach. Learn. Res. 5(Nov) (2004) 1531-1555. [12] J.C.B. Melo, G.D.C. Cavalcanti, K.S. Guimaraes, PCA feature extraction for protein structure prediction, International Joint Conference on Neural Networks, vol. 4, IEEE 2003, pp. 2952-2957. [13] Q. Jiang, X. Yan, W. Zhao, Fault detection and diagnosis in chemical processes using sensitive principal component analysis, Ind. Eng. Chem. Res. 52(4) (2013) 1635-1644. [14] Q. Liang, H. Han, X.Y. Cui, et al., Fault diagnosis for refrigeration system based on PCA-PNN, CIESC J 67(3) (2016) 1023-1031(in Chinese). [15] Q. Zhang, Y. Wu, J. Xu, Application of principal component analysis and genetic neural network in fault diagnosis of refrigeration system, Comput Meas Control 24(9) (2016) 23-27. [16] L.J. Cao, W.K. Chong, Feature Extraction in Support Vector Machine:A Comparison of PCA, XPCA and ICA, International Conference on Neural Information Processing, IEEE 2002, pp. 1001-1005. [17] Y. Zhang, S. Li, Y. Teng, Dynamic processes monitoring using recursive kernel principal component analysis, Chem. Eng. Sci. 72(16) (2012) 78-86. [18] A.M. Jade, B. Srikanth, V.K. Jayaraman, et al., Feature extraction and denoising using kernel PCA, Chem. Eng. Sci. 58(19) (2003) 4441-4448. [19] R. Rosipal, M. Girolami, L.J. Trejo, et al., Kernel PCA for feature extraction and de-noising in nonlinear regression, Neural Comput. Applic. 10(3) (2001) 231-243. [20] Y. Xu, D. Zhang, F. Song, et al., A method for speeding up feature extraction based on KPCA, Neurocomputing 70(4-6) (2007) 1056-1061. [21] L.Y. Yang, A. Qin, Face Recognition Algorithms Based on Uncorrelated Multilinear PCA, Radio Communications Technology 42(1) (2016) 73-75. [22] T. Rato, M. Reis, E. Schmitt, et al., A systematic comparison of PCA-based statistical process monitoring methods for high-dimensional, time-dependent processes, AIChE J. 62(5) (2016) 1478-1493. [23] R. Dunia, T.F. Edgar, M. Nixon, Process monitoring using principal components in parallel coordinates, AICHE J. 59(2) (2013) 445-456. [24] L. Liu, C. Li, Y. Lei, et al., Feature extraction for hyperspectral remote sensing image using weighted PCA-ICA, Arab. J. Geosci. 10(14) (2017) 307. [25] A. Bouzalmat, J. Kharroubi, A. Zarghili, Comparative study of PCA, ICA, LDA using SVM classifier, J. Emerg. Technol. Web Intell. 6(1) (2014) 64-68. [26] S.J. Qin, Process data analytics in the era of big data, AIChE J. 60(9) (2014) 3092-3100. [27] F. Dikbaş, A new two-dimensional rank correlation coefficient, Water Resour. Manag. 32(5) (2018) 1-15. [28] H. Zhou, Z. Deng, Y. Xia, et al., A new sampling method in particle filter based on Pearson correlation coefficient, Neurocomputing 216(2016) 208-215. [29] A.A. Aburomman, M.B.I. Reaz, Ensemble of binary SVM classifiers based on PCA and LDA feature extraction for intrusion detection[C], Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2016 IEEE, IEEE 2016, pp. 636-640. [30] R.J. Martis, U.R. Acharya, L.C. Min, ECG beat classification using PCA, LDA, ICA and discrete wavelet transform, Biomed. Signal Process. Control 8(5) (2013) 437-448. [31] J. Huang, X. Yan, Related and independent variable fault detection based on KPCA and SVDD, J. Process Control 39(2016) 88-99. [32] M.M. Rashid, Y. Jie, Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach, Indonesia 51(33) (2012) 10910-10920. [33] Y. He, L. Zhou, Z. Ge, et al., Dynamic mutual information similarity based transient process identification and fault detection, Can. J. Chem. Eng. 96(7) (2017) 1541-1558. [34] C.D. Tong, X.H. Shi, Mutual information based PCA algorithm with application in process monitoring, CIESC J. 66(10) (2015) 4101-4106(in Chinese). [35] C.D. Tong, T. Lan, X.H. Shi, Fault detection by decentralized dynamic PCA algorithm on mutual information, CIESC J. 67(10) (2016) 4317-4323(in Chinese). |