[1] J. Li, I.A. Karimi, Scheduling gasoline blending operations from recipe determination to shipping using unit slots, Ind. Eng. Chem. Res. 50(15) (2011) 9156-9174. [2] H. Cheng, Z. Liu, F. Qian, A novel octane number model for gasoline blending and its application, Comput. Appl. Chem. 27(10) (2010) 1317-1320. [3] A. Singh, P.J. Vermeer, S.S. Woo, J.F. Forbes, Model-based real-time optimization of automotive gasoline blending operations, J. Process Control 10(1) (2000) 43-58. [4] K. He, F. Qian, H. Cheng, W.L. Du, Improved integrated optimization method of gasoline blend planning and real-time blend recipes, Ind. Eng. Chem. Res. 55(16) (2016) 4632-4645. [5] Y. Wu, Y. Jin, Y. Li, D. Sun, X. Liu, Y. Chen, NIR spectroscopy as a process analytical technology (PAT) tool for on-line and real-time monitoring of an extraction process, Vib. Spectrosc. 58(1) (2012) 109-118. [6] J. Wan, Z. Han, K. Liu, RON predicted of gasoline by NIR based on ICA and SVM, International Computer Conference on Wavelet Active Media Technology and Information Processing, IEEE 2016, pp. 498-501. [7] W. Ni, L. NRgaard, M. MRup, Non-linear calibration models for near infrared spectroscopy, Anal. Chim. Acta 813(2014) 1-14. [8] J.S. Shenk, J.J. Workman, M.O. Westerhaus, Handbook of Near-Infrared Analysis, CRC Press, 2001. [9] R.M. Balabin, R.Z. Safieva, E.I. Lomakina, Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction, Chemom. Intell. Lab. Syst. 88(2) (2007) 183-188. [10] R. Nikzadlangerodi, E. Lughofer, C. Cernuda, T. Reischer, W. Kantner, M. Pawliczek, M. Brandstetter, Calibration model maintenance in melamine resin production:Integrating drift detection, smart sample selection and model adaptation, Anal. Chim. Acta 1013(2) (2018) 1-12. [11] P. Kadlec, R. Grbi, B. Gabrys, Review of adaptation mechanisms for data-driven soft sensors, Comput. Chem. Eng. 35(1) (2011) 1-24. [12] O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, J.P. Huvenne, Support vector machines (SVM) in near infrared (NIR) spectroscopy:Focus on parameters optimization and model interpretation, Chemom. Intell. Lab. Syst. 96(1) (2009) 27-33. [13] C. Mei, Y. Su, G. Liu, Y. Ding, Z. Liao, Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes, Chin. J. Chem. Eng. 25(1) (2017) 116-122. [14] F. Allegrini, J.A. Fernndez Pierna, W.D. Fragoso, A.C. Olivieri, V. Baeten, P. Dardenne, Regression models based on new local strategies for near infrared spectroscopic data, Anal. Chim. Acta 933(24) (2016) 50-58. [15] Y. Wang, Y. Si, B. Huang, Z. Lou, Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms:2008-2017, Can. J. Chem. Eng. 96(10) (2018) 2073-2085. [16] Q.P. Mei, T.F. Li, L.Z. Yao, D. Huang, Y.L. Yang, Study of an adaptable calibration model of near-infrared spectra based on KF-PLS, Chemom. Intell. Lab. Syst. 157(15) (2016) 152-161. [17] H. Jin, X. Chen, J. Yang, L. Wang, L. Wu, Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process, Chemom. Intell. Lab. Syst. 143(15) (2015) 58-78. [18] A. Rinnan, M. Andersson, C. Ridder, S.B. Engelsen, Recursive weighted partial least squares (rPLS):an efficient variable selection method using PLS, J. Chemom. 28(5) (2014) 439-447. [19] N. Qi, Z. Zhang, Y. Xiang, P.B. Harrington, Locally linear embedding method for dimensionality reduction of tissue sections of endometrial carcinoma by near infrared spectroscopy, Anal. Chim. Acta 724(8) (2012) 12-19. [20] H. Min, X.L. Luo, Calibration of soft sensor by using just-in-time modeling and Adaboost learning method, Chin. J. Chem. Eng. 24(8) (2016) 1038-1046. [21] H. Kaneko, K. Funatsu, Ensemble locally weighted partial least squares as a just in time modeling method, AIChE J 62(3) (2016) 717-725. [22] M. Anzanello, F. Fogliatto, M.C.A. Marcelo, D. Pozebon, M.F. Ferro, Wavelength selection framework for classifying food and pharmaceutical samples into multiple classes, J. Chemom. 30(6) (2016) 346-353. [23] R. Liu, G. Tawa, A. Wallqvist, Locally weighted learning methods for predicting dosedependent toxicity with application to the human maximum recommended daily dose, Chem. Res. Toxicol. 25(10) (2012) 2216-2226. [24] S. Kim, M. Kano, S. Hasebe, A. Takinami, T. Seki, Long-term industrial applications of inferential control based on just-in-time soft-sensors:Economical impact and challenges, Ind. Eng. Chem. Res. 52(35) (2013) 12346-12356. [25] B.S. Dayal, J.F. Macgregor, Improved PLS algorithms, J. Chemom. 11(1) (1997) 73-85. [26] Q. Ding, G.W. Small, M.A. Arnold, Genetic algorithm-based wavelength selection for the near-infrared determination of glucose in biological matrixes:Initialization strategies and effects of spectral resolution, Anal. Chem. 70(21) (1998) 4472-4479. [27] C. Cernuda, E. Lughofer, G. Mayr, T. Rder, P. Hintenaus, W. Mrzinger, J. Kasberger, Incremental and decremental active learning for optimized self-adaptive calibration in viscose production, Chemom. Intell. Lab. Syst. 138(15) (2014) 14-29. |