[1] H.A.N. Wang, Z.Y. Zhang, Y.M. Yang, H.S. Zhang, Numerical investigation of the interaction mechanism of two bubbles, Int. J. Mod. Phys. C 21(01) (2010) 33-49. [2] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas-liquid systems:a review, Ind. Eng. Chem. Res. 44(16) (2005) 5873-5931. [3] J.F. Harper, The motion of bubbles and drops through liquids, Adv. Appl. Mech, Elsevier 12(1972) 59-129. [4] B. Bunner, G. Tryggvason, An examination of the flow induced by the motion of many buoyant bubbles, J. Visual 2(2) (1999) 153-158. [5] X. Chai, X. Liu, J. Xiong, X. Cheng, Numerical investigation of bubble wake properties in the moving liquid with LES model, J. Nucl. Sci. Technol. 53(11) (2016) 1870-1880. [6] J.B. Joshi, K. Nandakumar, G.M. Evans, V.K. Pareek, M.M. Gumulya, M.J. Sathe, M.A. Khanwale, Bubble generated turbulence and direct numerical simulations, Chem. Eng. Sci. 157(2017) 26-75. [7] H.A. Jakobsen, H. Lindborg, C.A. Dorao, Modeling of bubble column reactors:progress and limitations, Ind. Eng. Chem. Res. 44(14) (2005) 5107-5151. [8] J. Crabtree, J. Bridgwater, Bubble coalescence in viscous liquids, Chem. Eng. Sci. 26(6) (1971) 839-851. [9] D. Bhaga, M. Weber, In-line interaction of a pair of bubbles in a viscous liquid, Chem. Eng. Sci. 35(12) (1980) 2467-2674. [10] I. Komasawa, T. Otake, M. Kamojima, Wake behavior and its effect on interaction between spherical-cap bubbles, J. Chem. Eng. Jpn 13(2) (1980) 103-109. [11] S. Narayanan, L.H.J. Goossens, N.W.F. Kossen, Coalescence of two bubbles rising in line at low Reynolds numbers, Chem. Eng. Sci. 29(10) (1974) 2071-2082. [12] J. Katz, C. Meneveau, Wake-induced relative motion of bubbles rising in line, Int. J. Multiphase Flow 22(2) (1996) 239-258. [13] J.F. Harper, On bubbles rising in line at large Reynolds numbers, J. Fluid Mech. 41(04) (1970) 751-758. [14] H. Yuan, A. Prosperetti, On the in-line motion of two spherical bubbles in a viscous fluid, J. Fluid Mech. 278(1994) 325-349. [15] M. Watanabe, T. Sanada, In-line motion of a pair of bubbles in a viscous liquid, Jsme. Int. J. B-Fluid. T 49(2) (2006) 410-418. [16] J. Zhang, L.S. Fan, On the rise velocity of an interactive bubble in liquids, Chem. Eng. J. 92(1-3) (2003) 169-176. [17] J.R. Muñoz, A. Soria, E. Salinas-Rodríguez, On the relative motion of two spherical bubbles rising in line and interacting by a laminar wake, AIChE Annual Meeting, Conference Proceedings 2005, pp. 689-693. [18] J. Ramírez-Muñoz, A. Soria, E. Salinas-Rodríguez, Hydrodynamic force on interactive spherical particles due to the wake effect, Int. J. Multiphase Flow 33(7) (2007) 802-807. [19] J. Ramírez-Muñoz, A. Gama-Goicochea, E. Salinas-Rodríguez, Drag force on interacting spherical bubbles rising in-line at large Reynolds number, Int. J. Multiphase Flow 37(8) (2011) 983-986. [20] J. Ramírez-Muñoz, E. Salinas-Rodríguez, A. Soria, A. Gama-Goicochea, Hydrodynamic interaction on large-Reynolds-number aligned bubbles:drag effects, Nucl. Eng. Des. 241(7) (2011) 2371-2377. [21] S.A. Baz-Rodríguez, J. Ramírez-Muñoz, A. Soria, In-line interaction between two spherical particles due to a laminar wake effect, Int. J. Multiphase Flow 39(2012) 240-244. [22] J. Ramírez-Muñoz, S. Baz-Rodríguez, E. Salinas-Rodríguez, E. Castellanos-Sahagún, H. Puebla, Forces on aligned rising spherical bubbles at low-to-moderate Reynolds number, Phys. Fluids 25(9) (2013), 093303. [23] S.A. Baz-Rodríguez, J. Ramírez-Muñoz, A. Soria, J.C. Sacramento-Rivero, Hydrodynamic interaction of two spherical bubbles rising in-line:a semi-analytical approach, Chem. Eng. Commun. 201(5) (2014) 674-687. [24] M. Gumulya, R.P. Utikar, G.M. Evans, J.B. Joshi, V. Pareek, Interaction of bubbles rising inline in quiescent liquid, Chem. Eng. Sci. 166(2017) 1-10. [25] J. Feng, X. Li, Y. Bao, Z. Cai, Z. Gao, Coalescence and conjunction of two in-line bubbles at low Reynolds numbers, Chem. Eng. Sci. 141(2016) 261-270. [26] N. Hasan, Z.b. Zakaria, Computational approach for a pair of bubble coalescence process, Int. J. Heat Fluid Flow 32(3) (2011) 755-761. [27] M. Cheng, J. Hua, J. Lou, Simulation of bubble-bubble interaction using a lattice Boltzmann method, Comput. Fluids 39(2) (2010) 260-270. [28] E. Delnoij, J.A.M. Kuipers, W.P.M. van Swaaij, Computational fluid dynamics applied to gas-liquid contactors, Chem. Eng. Sci. 52(21) (1997) 3623-3638. [29] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1) (1981) 201-225. [30] D. Ma, M. Liu, Y. Zu, C. Tang, Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns, Chem. Eng. Sci. 72(2012) 61-77. [31] J. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(2) (1992) 335-354. [32] D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, Numerical Methods for Fluid Dynamics, 1982. [33] R. Moissis, P. Griffith, Entrance effects in a two-phase slug flow, J. Heat Transf. 84(1) (1962) 29-38. [34] A.M.F.R. Pinto, M.N. Coelho Pinheiro, J.B.L.M. Campos, Coalescence of two gas slugs rising in a co-current flowing liquid in vertical tubes, Chem. Eng. Sci. 53(16) (1998) 2973-2983. [35] D. Bhaga, M.E. Weber, Bubbles in viscous liquids:shapes, wakes and velocities, J. Fluid Mech. 105(1981) 61-85. [36] R. Turton, O. Levenspiel, A short note on the drag correlation for spheres, Powder Technol. 47(1) (1986) 83-86. [37] Z. Yu, H. Yang, L.-S. Fan, Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method, Chem. Eng. Sci. 66(14) (2011) 3441-3451. [38] M. Manga, H.A. Stone, Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions, J. Fluid Mech. 300(1995) 231-263. |