[1] R.J. Hill, D.L. Koch, A.J.C. Ladd, Moderate-Reynolds-number flows in ordered and random arrays of spheres, J. Fluid Mech. 448(2001) 243-278. [2] R.J. Hill, D.L. Koch, A.J.C. Ladd, The first effects of fluid inertia on flows in ordered and random arrays of spheres, J. Fluid Mech. 448(2001) 213-241. [3] G.R. McNamara, G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61(1988) 2332. [4] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique. 29(1979) 47-65. [5] S.S. Kriebitzsch, V.D.M.M. Hoef, J.H. Kuipers, Fully resolved simulation of a gasfluidized bed:A critical test of DEM models, Chem. Eng. Sci. 91(2013) 1-4. [6] J. Capecelatro, O. Desjardins, R.O. Fox, On fluid-particle dynamics in fully developed cluster-induced turbulence, J. Fluid Mech. 780(2015) 578-635. [7] K. Luo, J. Tan, Z. Wang, J. Fan, Particle-resolved direct numerical simulation of gassolid dynamics in experimental fluidized beds, AIChE J. 62(2016) 1917-1932. [8] J.R. Third, Y. Chen, C.R. Muller, Comparison between finite volume and latticeBoltzmann method simulations of gas-fluidised beds:bed expansion and particle-fluid interaction force, Comput. Part. Mech. 3(2016) 373-381. [9] A. Esteghamatian, M. Bernard, M. Lance, A. Hammouti, A. Wachs, Micro/meso simulation of a fluidized bed in a homogeneous bubbling regime, Int. J. Multiph. Flow. 92(2017) 93-111. [10] P.A. Skordos, Initial and boundary conditions for the lattice Boltzmann method, Phys. Rev. E 48(1993) 4823-4842. [11] M. Wang, Y.T. Feng, Y. Wang, T. Zhao, Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling, Granul. Matter 19(2017) 43. [12] C. Thornton, Numerical simulations of deviatoric shear deformation of granular media, Geotechnique. 50(2000) 43-53. [13] L. Cui, C. Osullivan, S. Oneill, An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model, Geotechnique. 57(2007) 831-844. [14] W. Yang, Z. Zhou, D. Pinson, A. Yu, Periodic boundary conditions for discrete element method simulation of particle flow in cylindrical vessels, Ind. Eng. Chem. Res. 53(2014) 8245-8256. [15] F. Radjai, F. Dubois, Element Modeling of Granular Materials, 425P, Wiley-Iste, France, 2011978-1-84821-260-2. . [16] J. Zhang, D.Y. Kwok, Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows, Phys. Rev. E 73(2006), 47702. [17] S.H. Kim, H. Pitsch, A generalized periodic boundary condition for lattice Boltzmann method simulation of a pressure driven flow in a periodic geometry, Phys. Fluids 19(2007), 108101. [18] O. Graser, A. Grimm, Adaptive generalized periodic boundary conditions for lattice Boltzmann simulations of pressure-driven flows through confined repetitive geometries, Phys. Rev. E 82(2010), 16702. [19] H.E.A. Van Den Akker, Toward a truly multiscale computational strategy for simulating turbulent wwo-phase flow processes, Ind. Eng. Chem. Res. 49(2010) 10780-10797. [20] Q. Xiong, B. Li, G. Zhou, X. Fang, J. Xu, J. Wang, X. He, X. Wang, L. Wang, W. Ge, Largescale DNS of gas-solid flows on Mole-8.5, Chem. Eng. Sci. 71(2012) 422-430. [21] S. Tenneti, S. Subramaniam, Particle-resolved direct numerical simulation for gassolid flow model development, Annu. Rev. Fluid Mech. 46(2014) 199-230. [22] G. Zhou, Q. Xiong, L. Wang, X. Wang, X. Ren, W. Ge, Structure-dependent drag in gas-solid flows studied with direct numerical simulation, Chem. Eng. Sci. 116(2014) 9-22. [23] M.J. Cernick, S.W. Tullis, M.F. Lightstone, Particle subgrid scale modelling in largeeddy simulations of particle-laden turbulence, J. Turbul. 16(2015) 101-135. [24] X. Liu, L. Wang, W. Ge, Meso-scale statistical properties of gas-solid flow a direct numerical simulation (DNS) study, AIChE J. 63(2017) 3-14. [25] L. Reh, The circulating fluid bed reactor:its main features and applications, Chem. Eng. Process. 20(1986) 117-127. [26] C.S. Peskin, Flow patterns around heart valves:a numerical method, J. Comput. Phys. 10(1972) 252-271. [27] C.S. Peskin, The immersed boundary method, Acta Numer. 11(2002) 479-517. [28] V.A. Luchnikov, N.N. Medvedev, L. Oger, J.P. Troadec, Voronoi-Delaunay analysis of voids in systems of nonspherical particles, Phys. Rev. E 59(1999) 7205-7212. [29] S.S. Kriebitzsch, V.D.M.M. Hoef, J.H. Kuipers, Drag force in discrete particle models-Continuum scale or single particle scale? AIChE J. 59(2013) 316-324. |