[1] L.Q. Meng, W.G. Li, S.M. Zhang, C.D. Wu, L.Y. Lv, Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw, Bioresour. Technol. 226(2017) 39-45. [2] X.Y. Meng, B. Liu, C. Xi, X.S. Luo, X.F. Yuan, X.F. Wang, W.B. Zhu, H.L. Wang, Z.J. Cui, Effect of pig manure on the chemical composition and microbial diversity during cocomposting with spent mushroom substrate and rice husks, Bioresour. Technol. 251(2018) 22-30. [3] L.Q. Meng, S.M. Zhang, H.N. Gong, X.C. Zhang, C.D. Wu, W.G. Li, Improving sewage sludge composting by addition of spent mushroom substrate and sucrose, Bioresour. Technol. 253(2018) 197-203. [4] F. Yang, Y. Hou, M. Niu, W. Wu, D. Sun, Q. Wang, Z. Liu, Production of benzene poly (carboxylic acid)s and small-molecule fatty acids from lignite by catalytic oxidation in NaVO3/H2SO4 aqueous solution with molecular oxygen, Ind. Eng. Chem. Res. 54(2015) 12254-12262. [5] F. Yang, Y. Hou, M. Niu, T. Lu, W. Wu, Z. Liu, Catalytic oxidation of lignite to carboxylic acids in aqueous H5PV2Mo10O40/H2SO4 solution with molecular oxygen, Energy Fuel 31(2017) 3830-3837. [6] F. Yang, Y. Hou, M. Niu, W. Wu, Z. Liu, Catalytic oxidation of lignite to carboxylic acids by molecular oxygen in an aqueous FeCl3 solution, Fuel 202(2017) 129-134. [7] F.J. Liu, X.Y. Wei, J. Gui, P. Li, Y.G. Wang, W.T. Li, et al., Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation, Fuel Process. Technol. 126(2014) 199-206. [8] J.H. Lv, X.Y. Wei, Y. Qing, Y.H. Wang, Z. Wen, Y. Zhu, et al., Insight into the structural features of macromolecular aromatic species in Huolinguole lignite through ruthenium ion-catalyzed oxidation, Fuel 128(2014) 231-239. [9] G.Z. Gong, X.Y. Wei, Z.M. Zong, Separation and analysis of the degradation products of two coals in aqueous NaOCl solution, J. Fuel Chem. Technol. 40(2012) 1-7. [10] F.J. Liu, X.Y. Wei, Y. Zhu, Y.G. Wang, P. Li, X. Fan, Y.P. Zhao, Z.M. Zong, W. Zhao, Y.B. Wei, Oxidation of Shengli lignite with aqueous sodium hypochlorite promoted by pretreatment with aqueous hydrogen peroxide, Fuel 111(2013) 211-215. [11] Y.G. Wang, X.Y. Wei, H.L. Yan, F.J. Liu, P. Li, Z.M. Zong, Sequential oxidation of Jincheng No. 15 anthracite with aqueous sodium hypochlorite, Fuel Process. Technol. 125(2014) 182-189. [12] Y.P. Zhao, Z.M. Zong, J.N. Li, Y.L. Wang, X. Fan, X.Y. Wei, Oxidation of Lingwu coal extraction residue in aqueous sodium hypochlorite under mild conditions, Trans. Tianjin Univ. 21(2015) 19-25. [13] L. Doskočil, L. Grasset, D. Válková, M. Pekař, Hydrogen peroxide oxidation of humic acids and lignite, Fuel 134(2014) 406-413. [14] F.J. Liu, Z.M. Zong, J. Gui, X.N. Zhu, X.Y. Wei, L. Bai, Selective production and characterization of aromatic carboxylic acids from Xianfeng lignite-derived residue by mild oxidation in aqueous H2O2 solution, Fuel Process. Technol. 181(2018) 91-96. [15] D.D. Xu, Z.M. Zong, W.T. Li, S.K. Wang, J.H. Lv, Z.Q. Liu, Z.K. Li, P.G. Duan, X.Y. Wei, Oxidative degradation of the extraction residue from a sawdust, Fuel 212(2018) 586-592. [16] X.L. Xue, Z.M. Zong, H.L. Yan, Q.X. Zheng, L.Y. Kong, X.Y. Wei, Sequential extraction of oak wood sawdust and oxidative degradation of the extraction residue, Fuel Process. Technol. 179(2018) 167-174. [17] J. Liu, X.Y. Wei, Y.G. Wang, D.D. Zhang, T.M. Wang, J.H. Lv, J. Gui, M. Qu, Z.M. Zong, Mild oxidation of Xiaolongtan lignite in aqueous hydrogen peroxide-acetic anhydride, Fuel 142(2015) 268-273. [18] Y.G. Wang, X.Y. Wei, J. Liu, H.L. Yan, P. Li, F.J. Liu, Z.M. Zong, Oxidation of Shenmu char powder with aqueous hydrogen peroxide-acetic anhydride, Fuel Process. Technol. 136(2015) 56-63. [19] N.C. Deno, B.A. Greigger, S.G. Stroud, New method for elucidating the structures of coal, Fuel 57(1978) 455-459. [20] N.C. Deno, K.W. Curry, B.A. Greigger, et al., Dihydroaromatic structure of Illinois no. 6. Monterey coal, Fuel 59(1980) 694-698. [21] N.C. Deno, B.A. Greigger, A.D. Jones, et al., Chemical structure of Wyodak coal, Fuel 59(1980) 699-700. [22] N.C. Deno, A.D. Jones, C.C. Koch, et al., Aryl-alkyl groups in coals, Fuel 61(1982) 490-492. [23] Y. Lu, X.Y. Wei, Z.M. Zong, Y.C. Lu, W. Zhao, J.P. Cao, Structural investigation and application of lignins, Prog. Chem. 25(2013) 838-858. [24] H.L. Yan, Z.M. Zong, Z.K. Li, Jiao Kong, Q.X. Zheng, Yan Li, X.Y. Wei, Sweet sorghum stalk liquefaction in supercritical methanol:Effects of operating conditions on product yields and molecular composition of soluble fraction, Fuel Process. Technol. 155(2017) 42-50. [25] J. Ibarra, E. Munoz, R. Moliner, FTIR study of the evolution of coal structure during the coalification process, Org. Geochem. 24(1996) 725-735. [26] M. Iglesias, J. Del Rio, F. Laggoun-Defarge, M. Cuesta, I. Suarez-Ruiz, Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation, J. Anal. Appl. Pyrolysis 62(2002) 1-34. [27] Z.W. Liu, X.Y. Wei, Z.M. Zong, J.N. Li, J.Q. Xue, X.F. Chen, F.J. Chen, Isolation and identification of methyl alkanoates from Lingwu coal, Energy Fuel 24(2010) 2784-2786. [28] M. Baysal, A. Yurum, B. Yildiz, Y. Yurum, Structure of some western Anatolia coals investigated by FTIR, Raman,13C solid state NMR spectroscopy and X-ray diffraction, Int. J. Coal Geol. 163(2016) 166-176. [29] Y. Chen, M. Mastalerz, Y. Schimmelmann, Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy, Int. J. Coal Geol. 104(2012) 22-23. |