[1] A. Fitoz, H. Nazır, M. Özgür, E. Emregül, K.C. Emregül, An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor, Corros. Sci. 133(2018) 451-464. [2] V. Rajeswari, K. Devarayan, P. Viswanathamurthi, Expired pharmaceutical compounds as potential inhibitors for cast iron corrosion in acidic medium, Res. Chem. Intermed. 43(7) (2017) 3893-3913. [3] N. Yilmaz, A. Fitoz, K.C. Emregül, A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino) methyl) phenol as a corrosion inhibitor for mild steel in a highly acidic environment, Corros. Sci. 111(2016) 110-120. [4] L.H. Madkour, S. Kaya, C. Kaya, L. Guo, Quantum chemical calculations, molecular dynamics simulation and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 1:Mono-azo dye derivatives, J. Taiwan Inst. Chem. E 68(2016) 461-480. [5] Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, S. Meghdadi, Enhanced corrosion resistance of mild steel in 1M HCl solution by trace amount of 2-phenylbenzothiazole derivatives:experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies, Corros. Sci. 114(2017) 133-145. [6] K. Hsu, E. Pfender, Analysis of the cathode region of a free-burning high intensity argon arc, J. Appl. Phys. 54(7) (1983) 3818-3824. [7] Y.Z. Li, N. Xu, X.P. Guo, G.A. Zhang, The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution, Corros. Sci. 128(2017) 9-22. [8] M. Verbrugge, Galvanic corrosion over a semi-infinite, planar surface, Corros. Sci. 48(11) (2006) 3489-3512. [9] E. Gutiérrez, J.A. Rodríguez, J. Cruz-Borbolla, J.G. Alvarado-Rodríguez, P. Thangarasu, Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives, Corros. Sci. 108(2016) 23-35. [10] R. Reale, L. Campanella, M.P. Sammartino, G. Visco, G. Bretti, M. Ceseri, R. Natalini, F. Notarnicola, A mathematical, experimental study on iron rings formation in porous stones, J. Cult. Herit. 38(2019) 158-166. [11] D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, Fifth ed. CRC Press, 2017. [12] A. Sorin, O. Teryaev, Axial anomaly and energy dependence of hyperon polarization in heavy-ion collisions, Phys. Rev. C:Nucl. Phys. 95(1) (2017) 011902. [13] Y. Yang, W.M. Saslow, Slow, steady discharge regime for concentrated lead-acid cells with planar, cylindrical, and spherical electrodes, J. Chem. Phys. 109(23) (1998) 10331-10338. [14] J. Ferguson, J. Fiard, R. Herbin, Three-dimensional numerical simulation for various geometries of solid oxide fuel cells, J. Power Sources 58(2) (1996) 109-122. [15] D.A. Noren, M.A. Hoffman, Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, J. Power Sources 152(2005) 175-181. [16] A.P. Brown, F.C. Anson, Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface, Anal. Chem. 49(11) (1977) 1589-1595. [17] R.H. Albrakaty, N.A. Wazzan, I. Obot, Theoretical study of the mechanism of corrosion inhibition of carbon steel in acidic solution by 2-aminobenzothaizole and 2-mercatobenzothiazole, Int. J. Electrochem. Sci. 13(2018) 3535-3554. [18] R.M. Souto, Y. González-García, A.C. Bastos, A.M. Simões, Investigating corrosion processes in the micrometric range:a SVET study of the galvanic corrosion of zinc coupled with iron, Corros. Sci. 49(12) (2007) 4568-4580. [19] V. Botte, D. Mansutti, A. Pascarelli, Numerical modeling of iron corrosion due to an acidic aqueous solution, Appl. Numer. Math. 55(3) (2005) 253-263. [20] A. Kahyarian, B. Brown, S. Nešić, Mechanism of cathodic reactions in acetic acid corrosion of iron and mild steel, Corrosion 72(12) (2016) 1539-1546. [21] J. Chen, J. Wang, E. Han, J. Dong, W. Ke, States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution, Corros. Sci. 50(5) (2008) 1292-1305. [22] S.J. Kim, Effect of the elastic tensile load on the electrochemical corrosion behavior and diffusible hydrogen content of ferritic steel in acidic environment, Int. J. Hydrog. Energy 42(30) (2017) 19367-19375. |