[1] D.D. Clark, D.J. Edwards, Virtual protein purification:a simple exercise to introduce pH as a parameter that effects ion exchange chromatography, Biochem. Mol. Biol. Educ. 46(2018) 91-97. [2] A. Hirano, K. Iwashita, S. Sakuraba, K. Shiraki, T. Arakawa, T. Kameda, Salt-dependent elution of uncharged aromatic solutes in ion-exchange chromatography, J. Chromatogr. A 1546(2018) 46-55. [3] G.M. Mojarrad Moghanloo, M. Khatami, A. Javidanbardan, S.N. Hosseini, Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and largescaleanion-exchange chromatography by optimizing the conductivity of buffers, Prot. Expr. Purif. 141(2018) 25-31. [4] A. Xue, L. Yu, Y. Sun, Implications from protein uptake kinetics onto dextran-grafted Sepharose FF coupled with ion exchange and affinity ligands, Chin. J. Chem. Eng. 25(2017) 906-910. [5] I.M. Abrams, J.R. Millar, A history of the origin and development of macroporous ion-exchange resins, React. Funct. Polym. 35(1997) 7-22. [6] Q. Wang, L. Yu, Y. Sun, Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers, J. Chromatogr. A 1443(2016) 118-125. [7] X. Li, Q. Wang, X. Dong, Y. Liu, Y. Sun, Grafting glycidyl methacrylate-iminodiacetic acid conjugate to Sepharose FF for fabrication of high-capacity protein cation exchangers, Biochem. Eng. J. 138(2018) 74-80. [8] Y. Hong, N. Liu, W. Wei, L.L. Yu, G. Ma, Y. Sun, Protein adsorption to poly (ethylenimine)-modified Sepharose FF:III. Comparison between different proteins, J. Chromatogr. A 1342(2014) 30-36. [9] Y. Zhao, X. Dong, L. Yu, Y. Sun, Protein adsorption to poly(ethylenimine)-modified Sepharose FF:VI. Partial charge neutralization drastically increases uptake rate, J. Chromatogr. A 1427(2016) 102-110. [10] J. Robinson, M.A. Snyder, C. Belisle, J.L. Liao, H. Chen, X. He, Y. Xu, S.M. Cramer, Investigating the impact of aromatic ring substitutions on selectivity for a multimodal anion exchange prototype library, J. Chromatogr. A 1569(2018) 101-109. [11] B.D. Bowes, H. Koku, K.J. Czymmek, A.M. Lenhoff, Protein adsorption and transport in dextran-modifiedion-exchange media. I:adsorption, J. Chromatogr. A 1216(2009) 7774-7784. [12] W.K. Chung, Y. Hou, A. Freed, M. Holstein, G.I. Makhatadze, S.M. Cramer, Investigation of protein binding affinity and preferred orientations in ion exchange systems using a homologous protein library, Biotechnol. Bioeng. 102(2009) 869-881. [13] Y. Hou, S.M. Cramer, Evaluation of selectivity in multimodal anion exchange systems:a priori prediction of protein retention and examination of mobile phase modifier effects, J. Chromatogr. A 1218(2011) 7813-7820. [14] M. Lisa, R. Denev, M. Holcapek, Retention behavior of isomeric triacylglycerols in silver-ion HPLC:effects of mobile phase composition and temperature, J. Sep. Sci. 36(2013) 2888-2900. [15] C. Victor Dos, M.S. Santos Junior, G.C. Sader, G. Goncalves, R.A. Simao Weissmuller, Effect of pH on the adsorption and interactions of bovine serum albumin with functionalized silicon nitride surface, Colloids Surf. 167(2018) 441-447. [16] K. Rezwan, L.P. Meier, M. Rezwan, J. Vörös, A. Marcus Textor, L.J. Gauckler, Bovine serum albumin adsorption onto colloidal Al2O3 particles:a new model based on zeta potential and UV-Vis measurements, Langmuir 20(2004) 10055-10061. [17] C. Tanford, J.G. Buzzell, D.G. Rands, S.A. Swanson, The reversible expansion of bovine serum albumin in acid solutions1, J. Am. Chem. Soc. 77(24) (1955) 6421-6428. [18] A. Staby, J.H. Jacobsen, R.G. Hansen, U.K. Bruus, I.H. Jensen, Comparison of chromatographic ion-exchange resins, J. Chromatogr. A 1118(2006) 168-179. [19] W. Kopaciewicz, M.A. Rounds, J. Fausnaugh, F.E. Regnier, Retention model for highperformanceion-exchange chromatography, J. Chromatogr. A 266(1983) 3-21. [20] N. Tugcu, M. Song, C.M. Breneman, N. Sukumar, K.P. Bennett, S.M. Cramer, Prediction of the effect of mobile-phase salt type on protein retention and selectivity in anion exchange systems, Anal. Chem. 75(2003) 3563-3572. [21] E.X. Perez Almodovar, B. Glatz, G. Carta, Counterion effects on protein adsorption equilibrium and kinetics in polymer-grafted cation exchangers, J. Chromatogr. A 1253(2012) 83-93. [22] J. Hubbuch, T. Linden, E. Knieps, A. Ljunglöf, J. Thömmes, M.R. Kula, Mechanism and kinetics of protein transport in chromatographic media studied by confocal laser scanning microscopy, J. Chromatogr. A 1021(2003) 93-104. [23] F. Dismer, M. Petzold, J. Hubbuch, Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents, J. Chromatogr. A 1194(2008) 11-21. [24] N. Liu, L. Yu, Y. Sun, Protein adsorption to poly(ethylenimine)-modified Sepharose FF:V. Complicated effects of counterions, J. Chromatogr. A 1404(2015) 44-50. [25] N. Liu, L.L. Yu, Y. Sun, Protein adsorption to poly(ethylenimine)-modified Sepharose FF. IV. Dynamic adsorption and elution behaviors, J. Chromatogr. A 1362(2014) 218-224. [26] M. Zhao, R. Liu, J. Luo, Y. Sun, Q. Shi, Fabrication of high-capacity cation-exchangers for protein adsorption:comparison of grafting-from and grafting-to approaches, Front. Chem. Sci. Eng. 13(1) (2019) 120-132. [27] E.D. Chrysina, K. Brew, K.R. Acharya, Crystal structures of Apo-and Holo-bovineα-Lactalbumin at 2.2-Å resolution reveal an effect of calcium on inter-lobe interactions, J. Biol. Chem. 275(2000) 37021-37029. [28] E.M. Johnson, D.A. Berk, R.K. Jain, W.M. Deen, Hindered diffusion in agarose gels:test of effective medium model, Biophys. J. 70(1996) 1017-1023. [29] T.J. Dolinsky, J.E. Nielsen, M.J. Andrew, N.A. Baker, PDB2PQR:an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res. 32(2004) 665-667. [30] T.J. Dolinsky, P. Czodrowski, H. Li, J.E. Nielsen, J.H. Jensen, G. Klebe, N.A. Baker, PDB2PQR:expanding and upgrading automated preparation of biomolecular structures for molecular simulations, Nucleic Acids Res. 35(2007) 522-525. [31] A.M. Lenhoff, Ion-exchange chromatography of proteins:The inside story, Mater. Today:Proc. 3(2016) 3559-3567. [32] L. Yu, L. Zhang, Y. Sun, Protein behavior at surfaces:Orientation, conformational transitions and transport, J. Chromatogr. A 1382(2015) 118-134. [33] M. Urmann, M. Hafner, C. Frech, Influence of protein and stationary phase properties on protein-matrix-interaction in cation exchange chromatography, J. Chromatogr. A 1218(2011) 5136-5145. [34] Y. Zhao, L. Yu, X. Dong, Y. Sun, Protein adsorption to poly(ethylenimine)-modified sepharose FF:VII. Complicated effects of pH, J. Chromatogr. A 1580(2018) 72-79. [35] S. Wang, X. Li, Y. Sun, Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF:a new anion exchanger of very high capacity and uptake rate for protein chromatography, J. Chromatogr. A 1597(2019) 187-195. [36] K. Wrzosek, M. Polakovic, Effect of pH on protein adsorption capacity of strong cation exchangers with grafted layer, J. Chromatogr. A 1218(2011) 6987-6994. [37] R. Kou, J. Zhang, T. Wang, G. Liu, Interactions between polyelectrolyte brushes and Hofmeister ions:Chaotropes versus Kosmotropes, Langmuir 31(2015) 10461-10468. [38] S. Nihonyanagi, S. Yamaguchi, T. Tahara, Counterion effect on interfacial water at charged interfaces and its relevance to the Hofmeister series, J. Am. Chem. Soc. 136(2014) 6155-6158. [39] Y. Marcus, Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of hydration at 298.15 K, J. Chem. Soc. Faraday Trans. 87(1991) 2995-2999. [40] J.C. Lutter, T.Y. Wu, Y. Zhang, Hydration of cations:a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers, J. Phys. Chem. B 117(2013) 10132-10141. [41] S. Takashima, Effect of ions on the dielectric dispersion of ovalbumin solution, J. Polym. Sci., Part A:Gen. Pap. 1(1963) 2791-2803. [42] D.P. Peter, L. Inger, F.R. Johan, A.M. Lenhoff, Effect of spacer arm length on protein retention on a strong cation exchange adsorbent, Anal. Chem. 76(2004) 5816-5822. |