[1] A.A.R. Darzi, H.H. Afrouzi, A. Moshfegh, M. Farhadi, Absorption and desorption of hydrogen in long metal hydride tank equipped with phase change material jacket, Int. J. Hydrog. Energy 41(22) (2016) 9595-9610. [2] H. Mahyari, H.H. Afrouzi, M. Shams, Three dimensional transient multiphase flow simulation in a dead end anode polymer electrolyte fuel cell, J. Mol. Liq. 225(2017) 391-405. [3] H. Pourdel, H.H. Afrouzi, O.A. Akbari, M. Miansari, D. Toghraie, A. Marzban, A. Koveiti, Numerical investigation of turbulent flow and heat transfer in flat tube, J. Therm. Anal. Calorim. 135(6) (2019) 3471-3483. [4] A.A. Rabinataj Darzi, H. Hassanzadeh Afrouzi, M. Khaki, M. Abbasi, Unconstrained melting and solidification inside rectangular enclosure, J. Fundam. Appl. Sci. 7(3) (2015) 436-451. [5] A.A. Lalami, H.H. Afrouzi, A. Moshfegh, Investigation of MHD effect on nanofluid heat transfer in microchannels, J. Therm. Anal. Calorim. 136(5) (2019) 1959-1975. [6] A. Javadzadegan, M. Joshaghani, A. Moshfegh, O.A. Akbari, H.H. Afrouzi, D. Toghraie, Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle:An LBM approach, Physica A:Statistical Mechanics and Its Applications 537(2020) 122439. [7] M. Hosseini, H.H. Afrouzi, H. Arasteh, D. Toghraie, Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model:A CFD study, Energy 188(2019) 116090. [8] A. Javadzadegan, S.H. Motaharpour, A. Moshfegh, O.A. Akbari, H.H. Afrouzi, D. Toghraie, Lattice-Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls, Physica A:Statistical Mechanics and Its Applications 526(2019) 121066. [9] H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor, Journal of Colloid and Interface Science 554(2019) 603-610. [10] H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid, Journal of Colloid and Interface Science 560(2020) 208-212. [11] S. Mousavi, Mohit Biglarian Morteza, A. Ali Rabienataj Darzi, Mousa Farhadi, Hamid Hassanzadeh Afrouzi, Davood Toghraie, Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field, J. Therm. Anal. Calorim. 139(5) (2020) 3331-3343. [12] M. Hosseini, H.H. Afrouzi, H. Arasteh, D. Toghraie, Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model:A CFD study, Energy 188(2019) 116090. [13] R. Darzi, AhmadAli, A.H. Eisapour, A. Abazarian, F. Hosseinnejad, H.H. Afrouzi, Mixed convection heat transfer analysis in an enclosure with two hot cylinders:A lattice Boltzmann approach, Heat Transfer-Asian Research 46(3) (2017) 218-236. [14] H. Hassanzadeh Afrouzi, A. Moshfegh, M. Farhadi, K. Sedighi, Dissipative particle dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale, Transp Phenom Nano Micro Scales 5(1) (2016) 44-53. [15] Z. Shamsadin-Azad, M.A. Taher, S. Cheraghi, H. Karimi-Maleh, A nanostructure voltammetric platform amplified with ionic liquid for determination of tertbutylhydroxyanisole in the presence kojic acid, Journal of Food Measurement and Characterization Volume 13(2019) 1781-1787, https://doi.org/10.1007/s11694-019-00096-6. [16] E.U. Küçüksille, R. Selbaş, A. Şencan, Data mining techniques for thermophysical properties of refrigerants, Energy Convers. Manag. 50(2) (2009) 399-412. [17] K. Comakli, F. Simsek, O. Comakli, B. Sahin, Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method, Appl. Energy 86(11) (2009) 2451-2458. [18] D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, M. Dahari, Investigation of rib's height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a rib-microchannel author-name:Akbari, Omid Ali, Appl. Math. Comput. 290(C) (2016) 135-153. [19] Z. Nikkhah, A. Karimipour, M.R. Safaei, P. Forghani-Tehrani, M. Goodarzi, M. Dahari, S. Wongwises, Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition, Int. Commun. Heat Mass Transfer 68(2015) 69-77. [20] S. Foroutani, A. Rahbari, Numerical investigation of laminar forced convection heat transfer in rectangular channels with different block geometries using nano-fluids, Therm. Sci. 21(5) (2017) 2129-2138. [21] M. Fakour, A. Rahbari, E. Khodabandeh, D.D. Ganji. Nanofluid thin film flow and heat transfer over an unsteady stretching elastic sheet by LSM. J. Mech. Sci. Technol. 32(1) (2018) 177-183. [22] M. Shahidi, M. Aligoodarz, A.-B. Mohammad, S. Foroutani, A. Rahbari, Experimental and numerical invesitgation on turbulent flow of Mwcnt-water nanofluid inside vertical coiled wire inserted tubes, Therm. Sci. 22(2018) 125-136. [23] E. Khodabandeh, M. Bahiraei, R. Mashayekhi, B. Talebjedi, D. Toghraie, Thermal performance of Ag-water nanofluid in tube equipped with novel conical strip inserts using two-phase method:geometry effects and particle migration considerations, Powder Technol. 338(2018) 87-100. [24] A. Karimipour, M.H. Esfe, M.R. Safaei, D.T. Semiromi, S. Jafari, S.N. Kazi, Mixed convection of copper-water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method, Physica A:Statistical Mechanics and Its Applications 402(2014) 150-168. [25] E. Gholamalizadeh, F. Pahlevanzadeh, K. Ghani, A. Karimipour, T.K. Nguyen, M.R. Safaei, Simulation of water/FMWCNT nanofluid forced convection in a microchannel filled with porous material under slip velocity and temperature jump boundary conditions, Int. J. Numer. Methods for Heat & Fluid Flow 30(5) (2019) 2329-2349. [26] A. Behnampour, O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, R. Mashayekhi, Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs, Physica E:Low-Dimensional Systems and Nanostructures 91(2017) 15-31. [27] W. Targanski, J.T. Cieslinski, Evaporation of R407C/oil mixtures inside corrugated and micro-fin tubes, Appl. Therm. Eng. 27(13) (2007) 2226-2232. [28] P.G. Vicente, A. Garcıa, A. Viedma, Experimental investigation on heat transfer and frictional specification of spirally corrugated tubes in turbulent flow at different Prandtl numbers, Int. J. Heat Mass Transf. 47(4) (2004) 671-681. [29] W. Wang, Y. Zhang, Y. Li, H. Han, B. Li, Multi-objective optimization of turbulent heat transfer flow in novel outward helically corrugated tubes, Appl. Therm. Eng. 138(2018) 795-806. [30] H. Han, R. Yu, B. Li, Y. Zhang, Multi-objective optimization of corrugated tube inserted with multi-channel twisted tape using RSM and NSGA-II, Appl. Therm. Eng. 159(2019) 113731. [31] R. Llopis, E. Torrella, R. Cabello, D. Sánchez, Performance evaluation of R404A and R507A refrigerant mixtures in an experimental double-stage vapour compression plant, Appl. Energy 87(5) (2010) 1546-1553. [32] Pradeep A. Patil, S.N. Sapali, Condensation pressure drop of HFC-134a and R-404A in a smooth and micro-fin U-tube, Exp. Thermal Fluid Sci. 35(1) (2011) 234-242. [33] S.N. Sapali, Pradeep A. Patil, Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube, Exp. Thermal Fluid Sci. 34(8) (2010) 1133-1141. [34] W. Kuczyński, H. Charun, T. Bohdal, Influence of hydrodynamic instability on the HTC during condensation of R134a and R404A refrigerants in pipe mini-channels, Int. J. Heat Mass Transf. 55(4) (2012) 1083-1094. [35] T. Bohdal, H. Charun, M. Sikora, Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels, Int. J. Heat Mass Transf. 54(9-10) (2011) 1963-1974. [36] B.O. Bolaji, Performance investigation of ozone-friendly R404A and R507 refrigerants as alternatives to R22 in a window air-conditioner, Energy and Buildings 43(11) (2011) 3139-3143. [37] H. Charun, Thermal and flow characteristics of the condensation of R404A refrigerant in pipe minichannels, Int. J. Heat Mass Transf. 55(9-10) (2012) 2692-2701. [38] M.R. Salimpour, S. Yarmohammadi, Heat transfer augmentation during R-404A vapor condensation in swirling flow, Int. J. Refrig. 35(7) (2012) 2014-2021. [39] Z. Zhou, B. Chen, Y. Wang, L. Guo, G. Wang, An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery, Appl. Therm. Eng. 39(2012) 29-36. [40] H. Charun, T. Bohdal, M. Czapp, Experimental investigation of the condensation of R134a and R404A refrigerants in a long, water-cooled, serpentine coils, Int. J. Heat Mass Transf. 67(2013) 602-612. [41] S. Laohalertdecha, S. Wongwises, Condensation heat transfer and flow specification of R-134a flowing through corrugated tubes, Int. J. Heat Mass Transf. 54(11-12) (2011) 2673-2682. [42] S. Laohalertdecha, S. Wongwises, An experimental study into the evaporation heat transfer and flow characteristics of R-134a refrigerant flowing through corrugated tubes, Int. J. Refrig. 34(1) (2011) 280-291. [43] K. Aroonrat, S. Wongwises, Evaporation heat transfer and friction specification of R-134a flowing downward in a vertical corrugated tube, Exp. Thermal Fluid Sci. 35(1) (2011) 20-28. [44] D. Khoeini, M.A. Akhavan-Behabadi, A. Saboonchi, Experimental study of condensation heat transfer of R-134a flow in corrugated tubes with different inclinations, International Communications in Heat and Mass Transfer 39(1) (2012) 138-143. [45] S. Laohalertdecha, S. Wongwises, The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube, Int. J. Heat Mass Transf. 53(13-14) (2010) 2924-2931. [46] S. Laohalertdecha, A.S. Dalkilic, S. Wongwises, Correlations for evaporation heat transfer coefficient and two-phase friction factor for R-134a flowing through horizontal corrugated tubes, Int. Communi. Heat Mass Transfer 38(10) (2011) 1406-1413. [47] M.A. Akhavan-Behabadi, M. Esmailpour, Experimental study of evaporation heat transfer of R-134a inside a corrugated tube with different tube inclinations, International Communications in Heat and Mass Transfer 55(2014) 8-14. [48] Z.S. Kareem, M.N. M. Jaafar, T.M. Lazim, S. Abdullah, A.F. Abdulwahid, Passive heat transfer enhancement review in corrugation, Exp. Thermal Fluid Sci. 68(2015) 22-38. [49] A. Sözen, E. Arcaklioğlu, T. Menlik, Derivation of empirical equations for thermodynamic properties of a ozone safe refrigerant (R404a) using artificial neural network, Expert Syst. Appl. 37(2) (2010) 1158-1168. [50] M. Balcilar, K. Aroonrat, A.S. Dalkilic, S. Wongwises, A generalized numerical correlation study for the determination of pressure drop during condensation and boiling of R134a inside smooth and corrugated tubes, Int. Commun. Heat Mass Transfer 49(2013) 78-85. [51] M. Balcilar, K. Aroonrat, A.S. Dalkilic, S. Wongwises, A numerical correlation development study for the determination of Nusselt numbers during boiling and condensation of R134a inside smooth and corrugated tubes, Int. Commun. Heat Mass Transfer 48(2013) 141-148. [52] M.P. Porto, H.T.C. Pedro, L. Machado, R.N.N. Koury, C.U.S. Lima, C.F.M. Coimbra, Genetic optimization of heat transfer correlations for evaporator tube flows, Int. J. Heat Mass Transf. 70(2014) 330-339. [53] H. Safikhani, S. Eiamsa-ard, Pareto based multi-objective optimization of turbulent heat transfer flow in helically corrugated tubes, Appl. Therm. Eng. 95(2016) 275-280. [54] J. Holland, Adaptation in natural and artificial systems:An introductory analysis with application to biology, control, and artificial intelligence, University of Michigan Press (1975). [55] E.G. David, Genetic algorithms in search, Optimization, and Machine Learning, Ethnographic Praxis in Industry Conference Proceeding, 9, Addison-Wesley Longman Publishing Co., Inc, MA, United States, 1988(2). [56] Z. Michalewicz, Genetic Algorithms + Data Structures=Evolution Programs, Springer Science & Business Media 2013. [57] D.S. Weile, E. Michielssen, Genetic algorithm optimization applied to electromagnetics:A review, IEEE Trans. Antennas Propag. 45(3) (1997) 343-353. [58] H. Karimi-Maleh, F. Karimi, M. Alizadeh, A.L. Sanati, Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems, The Chemical Record 20(2020) https://doi.org/10.1002/tcr.201900092. [59] F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor, Composites Part B:Engineering 172(2019) 666-670. [60] M.B. Kadri, W.A. Khan, Application of genetic algorithms in nonlinear heat conduction problems, Sci. World J. 2014(2014) 451274, https://doi.org/10.1155/2014/451274. [61] M.R. Salimpour, S. Yarmohammadi, Effect of twisted tape inserts on pressure drop during R-404A condensation, Int. J. Refrig. 35(2) (2012) 263-269. [62] Nidamarthi Srinivas, Kalyanmoy Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2(3) (1994) 221-248. [63] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm:NSGA-II, IEEE Trans. Evol. Comput. 6(2) (2002) 182-197. [64] H. Peng, X. Ling, Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms, Appl. Therm. Eng. 28(5-6) (2008) 642-650. [65] T.L. Cong, R.H. Chen, G.H. Su, S.Z. Qiu, W.X. Tian, Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm, Nucl. Eng. Des. 241(9) (2011) 3945-3951. [66] R. Beigzadeh, M. Rahimi, M. Parvizi, S. Eiamsa-ard, Application of ANN and GA for the prediction and optimization of thermal and flow characteristics in a rectangular channel fitted with twisted tape vortex generators, Numerical Heat Transfer, Part A:Applications 65(2) (2014) 186-199. [67] P.G. Vicente, A. Garcia, A. Viedma, Mixed convection heat transfer and isothermal pressure drop in corrugated tubes for laminar and transition flow, Int. Commun. Heat Mass Transfer 31(5) (2004) 651-662. [68] W.R. Huang, S. Foo, Neural network modeling of salinity variation in Apalachicola River, Water Res. 36(1) (2002) 356-362. [69] Y. Islamoglu, A new approach for the prediction of the heat transfer rate of the wireon-tube type heat exchanger——use of an artificial neural network model, Appl. Therm. Eng. 23(2) (2003) 243-249. [70] M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications of artificial neural networks for thermal analysis of heat exchangers-A review, Int. J. Therm. Sci. 90(2015) 150-172. [71] R. Beigzadeh, M. Rahimi, M. Parvizi, S. Eiamsa-ard, Application of ANN and GA for the prediction and optimization of thermal and flow characteristics in a rectangular channel fitted with twisted tape vortex generators, Numerical Heat Transfer, Part A:Applications 65(2) (2014) 186-199. |