[1] A. Tarasov, D.W. Gray, M.Y. Tsai, N. Shields, A. Montrose, N. Creedon, P. Lovera, A. O'Riordan, M.H. Monney, E.M. Vogel, A potentiometric biosensor for rapid on-site disease diagnostics, Biosens. Bioelectron. 79(2016) 669-678. [2] G. Dhawan, G. Sumana, B.D. Malhotra, Recent developments in urea biosensors, Biochem. Eng. J. 44(2019) 42-52. [3] S. Jakhar, C.S. Pundir, Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor, Biosens. Bioelectron. 100(2018) 242-250. [4] B. Kovacs, G. Nagy, R. Dombi, K. Toth, Optical biosensor for urea with improved response time, Biosens. Bioelectron. 18(2003) 111-118. [5] L.F. Wei, J.S. Shih, Fullerene-cryptand coated piezoelectric crystal urea sensor based on urease, Anal. Chim. Acta 437(2001) 77-85. [6] W.L. Lau, N.D. Vaziri, Urea, a true uremic toxin:the empire strikes back, Clin. Sci. 131(2017) 3-12. [7] G. Pozniak, B. Krajewska, W. Trochimczuk, Urease immobilized on modified polysulphone membrane:preparation and properties, Biomaterials 16(1995) 129-134. [8] M. Chellapandian, M.R.V. Krishnan, Chitosan-poly(glycidyl methacrylate) copolymer for immobilization of urease, Process Biochem. 33(1998) 595-600. [9] B. Sahoo, S.K. Sahu, P. Pramanik, A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle, J. Mol. Catal. B Enzym. 69(2011) 95-102. [10] R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis:why, what and how, Chem. Soc. Rev. 42(2013) 6223-6235. [11] R.C. Rodrigues, C. Ortiz, A. Berenguer-Murcia, R. Torres, R. Fernandez-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42(2013) 6290-6307. [12] L. Zhou, H. Mou, J. Gao, L. Ma, Y. He, Y. Jiang, Preparation of cross-linked enzyme aggregates of nitrile hydratase ES-NHT-118 from E. coli by macromolecular crosslinking agent, Chin. J. Chem. Eng. 25(2017) 487-492. [13] T.R.B. Ramakrishna, T.D. Nalder, W. Yang, S.N. Marshall, C.J. Barrow, Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials, J. Mater. Chem. B 6(2018) 3200-3218. [14] M. Sharifi, S.M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies:characterization and stability studies, Chin. J. Chem. Eng. 27(2019) 191-199. [15] M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas-benefits and challenges, Chem. Soc. Rev. 42(2013) 6277-6289. [16] Z. Zhou, M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev. 42(2013) 3894-3912. [17] C. Wang, H. Han, W. Jiang, X. Ding, Q. Li, Y. Wang, Immobilization of thermostable lipase QLM on core-shell structured polydopamine-coated Fe3O4 nanoparticles, Catalysts 7(2017) 49. [18] W. Jiang, X. Wang, J. Yang, H. Han, Q. Li, J. Tang, Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization:a new support for biodiesel synthesis, J. Colloid Interface Sci. 514(2018) 102-107. [19] C. Veghela, M. Kulkarni, S. Haram, R. Aiyer, M. Karve, A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection, Int. J. Biol. Macromol. 108(2018) 32-40. [20] F.S. Alatawi, M. Monier, N.H. Elsayed, Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease, Int. J. Biol. Macromol. 114(2018) 1018-1025. [21] R. Fopase, S. Nayak, M. Mohanta, P. Kale, B. Paramasivan, Inhibition assays of free and immobilized urease for detecting hexavalent chromium in water samples, 3 Biotech. 9(2019) 124. [22] S. Mondal, S. Malik, R. Sarkar, D. Roy, S. Saha, S. Mishra, A. Sarkar, M. Chatterjee, B. Mandal, Exuberant immobilization of urease on an inorganic SiO2 support enhances the enzymatic activities by 3-fold for perennial utilization, Bioconjug. Chem. 30(2019) 134-147. [23] L. Yang, X. Liu, N. Zhou, Y. Tian, Characteristics of refold acid urease immobilized covalently by graphene oxide-chitosan composite beads, J. Biosci. Bioeng. 127(2019) 16-22. [24] S. Garg, A. De, S. Mozumdar, pH-dependent immobilization of urease on glutathione-capped gold nanoparticles, J. Biomed. Mater. Res. A 103(2015) 1771-1783. [25] L. Betancor, H.R. Luckarift, Bioinspired enzyme encapsulation for biocatalysis, Trends Biotechnol. 26(2008) 566-572. [26] J. Shi, L. Zhang, Z. Jiang, Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization, ACS Appl. Mater. Interfaces 3(2011) 881-889. [27] J. Shi, Y. Jiang, S. Zhang, D. Yang, Z. Jiang, Biomimetic/bioinspired design of enzyme@capsule nano/microsystems, Methods Enzymol. 571(2016) 87-112. [28] Z. Li, Y. Ding, S. Li, Y. Jiang, Z. Liu, J. Ge, Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate, Nanoscale 8(2016) 17440-17445. [29] N. Rauner, M. Meuris, M. Zoric, J.C. Tiller, Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics, Nature 543(2017) 407-410. [30] X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.C. Zhou, Enzyme-MOF (metal-organic framework) composites, Chem. Soc. Rev. 42(2013) 6223-6235. [31] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14(2014) 5761-5765. [32] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. 51(2015) 13408-13411. [33] X. Wu, M. Hou, J. Ge, Metal-organic frameworks and inorganic nanoflowers:a type of emerging inorganic crystal nanocarriers for enzyme immobilization, Catal. Sci. Technol. 5(2015) 5077-5085. [34] P. Li, S.Y. Moon, M.A. Guelta, L. Lin, D.A. Gomez-Gualdron, R.Q. Snurr, S.P. Harvey, J.T. Hupp, O.K. Farha, Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis, ACS Nano 10(2016) 9174-9182. [35] E. Gkaniatsou, C. Sicard, R. Ricoux, L. Benahmed, F. Bourdreux, Q. Zhang, C. Serre, J.P. Mahy, N. Steunou, Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules, Angew. Chem. Int. Ed. 57(2018) 16141-16146. [36] C. Lin, K. Xu, R. Zheng, Y. Zheng, Immobilization of amidase into a magnetic hierarchically porous metal-organic framework for efficient biocatalysis, Chem. Commun. 55(2019) 5697-5700. [37] X. Wu, H. Yue, Y. Zhang, X. Gao, X. Li, L. Wang, Y. Cao, M. Hou, H. An, L. Zhang, S. Li, J. Ma, H. Lin, Y. Fu, H. Gu, W. Lou, W. Wei, R.N. Zare, J. Ge, Packaging and delivering enzymes by amorphous metal-organic frameworks, Nat. Commun. 10(2019) 5165. [38] H. He, H. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization:a biocatalyst for ester hydrolysis and kinetic resolution, ACS Appl. Mater. Interfaces 8(2016) 24517-24524. [39] W. Jiang, X. Wang, J. Chen, Y. Lu, H. Han, Y. Ding, Q. Li, J. Tang, Deuterohemin-peptide enzyme mimic-embedded metal-organic frameworks through biomimetic mineralization with efficient ATRP catalytic activity, ACS Appl. Mater. Interfaces 9(2017) 16948-16957. [40] B. Somturk, I. Yilmaz, C. Altinkaynak, A. Karatepe, N. Ozdemir, I. Ocsoy, Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties, Enzym. Microb. Technol. 86(2016) 134-142. [41] J. Zhang, Z. Shi, C. He, X. Song, Y. Yang, S. Sun, W. Zhao, C. Zhao, Urease immobilized GO core@shell heparin-mimicking polymer beads with safe and effective urea removal for blood purification, Int. J. Biol. Macromol. 156(2020) 1503-1511. [42] T. Akkas, A. Zakharyuta, A. Taralp, C.W. Ow-Yang, Cross-linked enzyme lyophilisates (CLELs) of urease:A new method to immobilize ureases, Enzym. Microb. Technol. 132(2020) 109390. |