[1] G. Sin, K. Ghosh, S. Natarajan, R. Srinivasan, A. Adhitya, I.A. Karimi, S. Papadokonstantakis, K. Hungerbühler, P. Angelo, Process Systems Engineering, 7. Abnormal Events Management and Process Safety, Ullmann's Encyclopedia of Industrial Chemistry, 2012. [2] E. Zio, T. Aven, Industrial disasters:Extreme events, extremely rare. Some reflections on the treatment of uncertainties in the assessment of the associated risks, Process. Saf. Environ. Prot. 91(1) (2013) 31-45. [3] T. Kourti, Process analysis and abnormal situation detection:From theory to practice, IEEE Control. Syst. Mag. 22(5) (2002) 10-25. [4] R. Isermann, Fault-Diagnosis Systems:An Introduction from Fault Detection to Fault Tolerance, Springer Science & Business Media, 2006. [5] R.M. Ferrari, T. Parisini, M.M. Polycarpou, Distributed fault detection and isolation of large-scale discrete-time nonlinear systems:An adaptive approximation approach, IEEE Trans. Autom. Control 57(2) (2012) 275-290. [6] J.M. Koscielny, M. Bartys, M. Syfert, Method of multiple fault isolation in large scale systems, IEEE Trans. Control Syst. Technol. 20(5) (2012) 1302-1310. [7] C. Keliris, M.M. Polycarpou, T. Parisini, A distributed fault detection filtering approach for a class of interconnected continuous-time nonlinear systems, IEEE Trans. Autom. Control 58(8) (2013) 2032-2047. [8] L.H. Chiang, E.L. Russell, R.D. Braatz, Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis, Chemom. Intell. Lab. Syst. 50(2) (2000) 243-252. [9] S. Yin, S.X. Ding, X. Xie, H. Luo, A review on basic data-driven approaches for industrial process monitoring, IEEE Trans. Ind. Electron. 61(11) (2014) 6418-6428. [10] S. Yin, X. Li, H. Gao, O. Kaynak, Data-based techniques focused on modern industry:An overview, IEEE Trans. Ind. Electron. 62(1) (2015) 657-667. [11] Z. Ge, Z. Song, F. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52(10) (2013) 3543-3562. [12] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis:Part I:Quantitative model based methods, Comput. Chem. Eng. 27(3) (2003) 293-311. [13] V. Venkatasubramanian, Prognostic and diagnostic monitoring of complex systems for product lifecycle management:Challenges and opportunities, Comput. Chem. Eng. 29(6) (2005) 1253-1263. [14] S.J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annu. Rev. Control. 36(2) (2012) 220-234. [15] R. Isermann, Model-based fault-detection and diagnosis-Status and applications, Annu. Rev. Control. 29(1) (2005) 71-85. [16] I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and reconfiguration methods, IEEE Trans. Control Syst. Technol. 18(3) (2010) 636-653. [17] M.R. Maurya, R. Rengaswamy, V. Venkatasubramanian, Fault diagnosis using dynamic trend analysis:A review and recent developments, Eng. Appl. Artif. Intell. 20(2) (2007) 133-146. [18] S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic datadriven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, J. Process Control 22(9) (2012) 1567-1581. [19] D. Wang, J. Liu, R. Srinivasan, Data-driven soft sensor approach for quality prediction in a refining process, IEEE Transactions on Industrial Informatics 6(1) (2010) 11-17. [20] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33(4) (2009) 795-814. [21] I.M. Cecílio, J.R. Ottewill, N.F. Thornhill, Determining the propagation path of a disturbance in multi-rate process and electromechanical systems, Control. Eng. Pract. 49(2016) 187-193. [22] P.J. García-Laencina, J. Sancho-Goḿez, A.R. Figueiras-Vidal, Pattern classification with missing data:A review, Neural Comput. & Applic. 19(2010) 263-282. [23] C. Shang, F. Yang, D. Huang, W. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process Control 24(3) (2014) 223-233. [24] G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18(2006) 1527-1554. [25] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313(2006) 504-507. [26] Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn. 2(2009) 1-56. [27] J. Schmidhuber, Deep learning in neural networks:An overview, Neural Netw. 61(2015) 85-117. [28] Z. Zhang, J. Zhao, A deep belief network based fault diagnosis model for complex chemical processes, Comput. Chem. Eng. 107(2017) 395-407. [29] H. Wu, J. Zhao, Deep convolutional neural network model based chemical process fault diagnosis, Comput. Chem. Eng. 115(2018) 185-197. [30] F. Cheng, Q. He, J. Zhao, A novel process monitoring approach based on variational recurrent autoencoder, Comput. Chem. Eng. 129(2019) 106515. [31] Z. Wang, Y. Su, W. Shen, S. Jin, J.H. Clark, J. Ren, X. Zhang, Predictive deep learning models for environmental properties:the direct calculation of octanol-water partition coefficients from molecular graphs, Green Chem. 21(2019) 4555-4565. [32] Y. Su, Z. Wang, S. Jin, W. Shen, J. Ren, M.R. Eden, An architecture of deep learning in QSPR modeling for the prediction of critical properties using molecular signatures, AIChE J. 65(2019), e16678. [33] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, in:B. Schölkopf, J. Platt, T. Hoffman (Eds.), Advances in Neural Information Processing Systems, vol. 19, MIT Press 2007, pp. 153-160. [34] M. Ranzato, C. Poultney, S. Chopra, Y. LeCun, "Efficient Learning of Sparse Representations with an Energy-Based Model", Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007. [35] G. Hinton, A practical guide to training restricted Boltzmann machines, Technical Report, U. of Toronto, 2010. [36] D. Dong, T.J. McAvoy, Nonlinear principal component analysis-based on principal curves and neural networks, Comput. Chem. Eng. 20(1996) 65-78. [37] J. Downs, E. Fogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17(1993) 245-255. [38] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. |