[1] S. Giwa, J.K. Lewis, L. Alvarez, R. Langer, A.E. Roth, G.M. Church, J.F. Markmann, D.H. Sachs, A. Chandraker, J.A. Wertheim, M. Rothblatt, E.S. Boyden, E. Eidbo, W.P.A. Lee, B. Pomahac, G. Brandacher, D.M. Weinstock, G. Elliott, D. Nelson, J.P. Acker, K. Uygun, B. Schmalz, B.P. Weegman, A. Tocchio, G.M. Fahy, K.B. Storey, B. Rubinsky, J. Bischof, J.A.W. Elliott, T.K. Woodruff, G.J. Morris, U. Demirci, K.G.M. Brockbank, E.J. Woods, R.N. Ben, J.G. Baust, D.Y. Gao, B. Fuller, Y. Rabin, D.C. Kravitz, M.J. Taylor, M. Toner, The promise of organ and tissue preservation to transform medicine, Nat. Biotechnol. 35(2017) 530-542. [2] M. Chris, M. Elisa, Regenerative medicine cell therapies:numbers of units manufactured and patients treated between 1988 and 2010, Regen. Med. 5(2010) 307-313. [3] J.R. Hess, Red cell storage, J. Proteome 73(2010) 368-373. [4] T.A. Berendsen, B.G. Bruinsma, C.F. Puts, N. Saeidi, O.B. Usta, B.E. Uygun, M.-L. Izamis, M. Toner, M.L. Yarmush, K. Uygun, Supercooling enables long-term transplantation survival following 4 days of liver preservation, Nat. Med. 20(2014) 790. [5] M. Scudellari, Core concept:cryopreservation aims to engineer novel ways to freeze, store, and thaw organs, Proc. Natl. Acad. Sci. U. S. A. 114(2017) 13060-13062. [6] P. Mazur, Cryobiology:the freezing of biological systems, Science 168(1970) 939-949. [7] P. Mazur, S.P. Leibo, E.H.Y. Chu, A two-factor hypothesis of freezing injury, Exp. Cell Res. 71(1972) 345-355. [8] J.E. Lovelock, M.W.H. Bishop, Prevention of freezing damage to living cells by dimethyl sulphoxide, Nature 183(1959) 1394-1395. [9] C. Polge, A.U. Smith, A.S. Parkes, Revival of spermatozoa after vitrification and dehydration at low temperatures, Nature 164(1949) 666. [10] H.T. Meryman, Cryopreservation of living cells:principles and practice, Transfusion 47(2007) 935-945. [11] P. Windrum, T.C.M. Morris, M.B. Drake, D. Niederwieser, T. Ruutu, E.C.L.W.P.C.S. on behalf of the, variation in dimethyl sulfoxide use in stem cell transplantation:a survey of EBMT centres, Bone. Marrow, Transplant. 36(2005) 601-603. [12] Z. Shu, S. Heimfeld, D. Gao, Hematopoietic SCT with cryopreserved grafts:adverse reactions after transplantation and cryoprotectant removal before infusion, Bone Marrow Transplant. 49(2013) 469-476. [13] L.J. Dumont, J.P. AuBuchon, Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials, Transfusion 48(2008) 1053-1060. [14] J.D. Benson, A.Z. Higgins, K. Desai, A. Eroglu, A toxicity cost function approach to optimal CPA equilibration in tissues, Cryobiology 80(2018) 144-155. [15] J.D. Benson, A.J. Kearsley, A.Z. Higgins, Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function, Cryobiology 64(2012) 144-151. [16] W. Rao, H. Huang, H. Wang, S. Zhao, J. Dumbleton, G. Zhao, X. He, Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant, ACS Appl. Mater. Interfaces 7(2015) 5017-5028. [17] C.R. Valeri, G. Ragno, P. Van Houten, L. Rose, M. Rose, Y. Egozy, M.A. Popovsky, Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument, Transfusion 45(2005) 1621-1627. [18] R.C. Deller, M. Vatish, D.A. Mitchell, M.I. Gibson, Synthetic polymers enable nonvitreous cellular cryopreservation by reducing ice crystal growth during thawing, Nat. Commun. 5(2014), 3244. [19] C.I. Biggs, T.L. Bailey, G. Ben, C. Stubbs, A. Fayter, M.I. Gibson, Polymer mimics of biomacromolecular antifreezes, Nat. Commun. 8(2017), 1546. [20] A. Eroglu, M.J. Russo, R. Bieganski, A. Fowler, S. Cheley, H. Bayley, M. Toner, Intracellular trehalose improves the survival of cryopreserved mammalian cells, Nat. Biotechnol. 18(2000) 163. [21] A. Borini, R. Sciajno, V. Bianchi, E. Sereni, C. Flamigni, G. Coticchio, Clinical outcome of oocyte cryopreservation after slow cooling with a protocol utilizing a high sucrose concentration, Hum. Reprod. 21(2005) 512-517. [22] G.M. Fahy, B. Wowk, J. Wu, S. Paynter, Improved vitrification solutions based on thepredictability of vitrification solution toxicity, Cryobiology 48(2004) 22-35. [23] C.J. Capicciotti, J.D.R. Kurach, T.R. Turner, R.S. Mancini, J.P. Acker, R.N. Ben, Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations, Sci. Rep. 5(2015), 9692. [24] J.G. Briard, J.S. Poisson, T.R. Turner, C.J. Capicciotti, J.P. Acker, R.N. Ben, Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing, Sci. Rep. 6(2016), 23619. [25] C.-H.C. Cheng, Origin and Mechanism of Evolution of Antifreeze Glycoproteins in Polar Fishes, Fishes of Antarctica:A Biological Overview, Springer Milan, Milano, (1998) 311-328. [26] K. Liu, C. Wang, J. Ma, G. Shi, X. Yao, H. Fang, Y. Song, J. Wang, Janus effect of antifreeze proteins on ice nucleation, Proc. Natl. Acad. Sci. U. S. A. 113(2016) 14739-14744. [27] S. Liu, W. Wang, E. von Moos, J. Jackman, G. Mealing, R. Monette, R.N. Ben, In vitro studies of antifreeze glycoprotein (AFGP) and a C-linked AFGP analogue, Biomacromolecules 8(2007) 1456-1462. [28] J. Yang, C. Pan, J. Zhang, X. Sui, Y. Zhu, C. Wen, L. Zhang, Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants, ACS Appl. Mater. Interfaces 9(2017) 42516-42524. [29] J. Yang, N. Cai, H. Zhai, J. Zhang, Y. Zhu, L. Zhang, Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation, Sci. Rep. 6(2016), 37458. [30] A.S. Rudolph, J.H. Crowe, Membrane stabilization during freezing:the role of two natural cryoprotectants, trehalose and proline, Cryobiology 22(1985) 367-377. [31] B. Rathinasabapathi, Metabolic engineering for stress tolerance:installing osmoprotectant synthesis pathways, Ann. Bot. 86(2000) 709-716. [32] J.F. Trant, R.A. Biggs, C.J. Capicciotti, R.N. Ben, Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues, RSC Adv. 3(2013) 26005-26009. [33] B. Graham, T.L. Bailey, J.R.J. Healey, M. Marcellini, S. Deville, M.I. Gibson, Polyproline as a minimal antifreeze protein mimic that enhances the cryopreservation of cell monolayers, Angew. Chem. Int. Ed. 56(2017) 15941-15944. [34] J. Krasensky, C. Jonak, Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks, J. Exp. Bot. 63(2012) 1593-1608. [35] V.K. Rai, Role of amino acids in plant responses to stresses, Biol. Plant. 45(2002) 481-487. [36] H. Pasantes-Morales, R. Franco, M.E. Torres-Marquez, K. Hernández-Fonseca, A. Ortega, Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells:contribution and mechanisms, Cell. Physiol. Biochem. 10(2000) 361-370. [37] M.-A. Hammer, J.M. Baltz, β-Alanine but not taurine can function as an organic osmolyte in preimplantation mouse embryos cultured from fertilized eggs, Mol. Reprod. Dev. 66(2003) 153-161. [38] S.J. Culliford, I. Bernhardt, J.C. Ellory, Activation of a novel organic solute transporter in mammalian red blood cells, J. Physiol. 489(1995) 755-765. [39] M.A. Shotwell, M.S. Kilberg, D.L. Oxender, The regulation of neutral amino acid transport in mammalian cells, Biochim. Biophys. Acta 737(1983) 267-284. [40] B. Ehinger, Selective neuronal accumulation of ω-amino acids in the rabbit retina, Brain Res. 107(1976) 541-554. [41] X. Sui, C. Wen, J. Yang, H. Guo, W. Zhao, Q. Li, J. Zhang, Y. Zhu, L. Zhang, Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal, ACS Biomater. Sci. Eng. 5(2019) 1083-1091. [42] U. Weise, T. Maloney, H.J.C. Paulapuro, Quantification of water in different states of interaction with wood pulp fibres, Cellulose 3(1996) 189-202. [43] G. Zhao, X. Liu, K. Zhu, X. He, Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs, Adv. Healthcare Mater. 6(2017) 1700988. [44] X. Liu, G. Zhao, Z. Chen, F. Panhwar, X. He, Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell-alginate hydrogel constructs, ACS Appl. Mater. Interfaces 10(2018) 16822-16835. [45] H. Huang, G. Zhao, Y. Zhang, J. Xu, T.L. Toth, X. He, Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation, ACS Biomater. Sci. Eng. 3(2017) 1758-1768. [46] H. Kiani, D.-W. Sun, Water crystallization and its importance to freezing of foods:a review, Trends Food Sci. Technol. 22(2011) 407-426. [47] H. Kitano, K. Takaha, M. Gemmei-Ide, Raman spectroscopic study on the structure of water in aqueous solution of α, ω-amino acids, J. Colloid Interface Sci. 283(2005) 452-458. [48] M. Ide, Y. Maeda, H. Kitano, Effect of hydrophobicity of amino acids on the structure of water, J. Phys. Chem. B 101(1997) 7022-7026. [49] P. Kushwaha, P. Mishra, Relationship of hydrogen bonding energy with electrostatic and polarization energies and molecular electrostatic potentials for amino acids:an evaluation of the lock and key model, Int. J. Quantum Chem. 76(2000) 700-713. [50] R. Franchi-Gazzola, V. Dall'Asta, R. Sala, R. Visigalli, E. Bevilacqua, F. Gaccioli, G.C. Gazzola, O. Bussolati, The role of the neutral amino acid transporter SNAT2 in cell volume regulation, Acta Physiol. 187(2006) 273-283. [51] M.R. Kasschau, C.M. Skisak, J.P. Cook, W.R. Mills, β-Alanine metabolism and high salinity stress in the sea anemone, Bunodosoma cavernata, J. Comp. Physiol. B 154(1984) 181-186. [52] R. Law, Amino acids as volume-regulatory osmolytes in mammalian cells, Comp. Biochem. Physiol. Part A Physiol. 99(1991) 263-277. [53] K.L. Scott, J. Lecak, J.P. Acker, Biopreservation of red blood cells:past, present, and future, Transfus. Med. Rev. 19(2005) 127-142. [54] A.W. Rowe, E. Eyster, A. Kellner, Liquid nitrogen preservation of red blood cells for transfusion:a low glycerol-rapid freeze procedure, Cryobiology 5(1968) 119-128. [55] B.A. Bouroncle, Preservation of living cells at -79 degrees C with dimethyl sulfoxide, Proc. Soc. Exp. Biol. Med. 119(1965) 958-961. [56] P. Mazur, Freezing of living cells:mechanisms and implications, Am. J. Physiol-cell. Ph 247(1984) C125. [57] W. Ding, J. Yu, E. Woods, S. Heimfeld, D. Gao, Simulation of removing permeable cryoprotective agents from cryopreserved blood with hollow fiber modules, J. Membr. Sci. 288(2007) 85-93. [58] J.M.C. Wessels, J.H. Veerkamp, Some aspects of the osmotic lysis of erythrocytes III. Comparison of glycerol permeability and lipid composition of red blood cell membranes from eight mammalian species, Biochim. Biophys. Acta Biomembr. 291(1973) 190-196. [59] J. Liu, J.A. Christian, J.K. Critser, Canine RBC osmotic tolerance and membrane permeability, Cryobiology 44(2002) 258-268. [60] R.C. Deller, M. Vatish, D.A. Mitchell, M.I. Gibson, Glycerol-free cryopreservation of red blood cells enabled by ice-recrystallization-inhibiting polymers, ACS Biomater. Sci. Eng. 1(2015) 789-794. [61] J. Liu, W. Ding, X. Zhou, Y. Kang, L. Zou, C. Li, X. Zhu, D. Gao, Deglycerolization of red blood cells:a new dilution-filtration system, Cryobiology 81(2018) 160-167. [62] A.K. Fry, A.Z. Higgins, Measurement of cryoprotectant permeability in adherent endothelial cells and applications to cryopreservation, Cell. Mol. Bioeng. 5(2012) 287-298. [63] G. Roy, Amino acid current through anion channels in cultured human glial cells, J. Membr. Biol. 147(1995) 35-44. [64] M.A. Shotwell, M.S. Kilberg, D.L. Oxender, The regulation of neutral amino acid transport in mammalian cells, BBA-Rev. Biomembranes 737(1983) 267-284. [65] J.R. Hoffman, J.R. Stout, R.C. Harris, D.S.J.A.A. Moran, β-Alanine supplementation and military performance, Amino Acids 47(2015) 2463-2474. [66] C.A. Hill, R.C. Harris, H.J. Kim, B.D. Harris, C. Sale, L.H. Boobis, C.K. Kim, J.A.J.A.A. Wise, Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity, Amino Acids 32(2007) 225-233. [67] E. Boonstra, R.D. Kleijn, L.S. Colzato, A. Alkemade, B.U. Forstmann, S.J.F.i.P. Nieuwenhuis, Neurotransmitters as food supplements:the effects of GABA on brain and behavior, Front. Psychol. 6(2015) 1520. |