[1] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews 38(2009) 253-278. [2]. B. Li, Z. Li, Q. Pang, J.Z. Zhang, Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting, Chemical Engineering Journal 401(2020), 126045. https://doi.org/10.1016/j.cej.2020.126045. [3] Y. Ren, D. Zeng, W.J. Ong, Interfacial engineering of graphitic carbon nitride (gC3N4)-based metal sulfide heterojunction photocatalysts for energy conversion:a review, Chinese Journal of Catalysis 40(2019) 289-319. [4] Z. Li, B. Li, C. Yang, S. Lin, Q. Pang, P. Shen, Controllable preparation of nitrogendoped graphitized carbon from molecular precursor as non-metal oxygen evolution reaction electrocatalyst, Applied Surface Science 491(2019) 723-734. [5] Z. Li, B. Li, J. Chen, Q. Pang, P Shen. Spinel NiCo2O43-D nanoflowers supported on graphene nanosheets as efficient electrocatalyst for oxygen evolution reaction, International Journal of Hydrogen Energy 44(2019) 16120-16131. [6] Z. Li, L. Zhang, X. Chen, B. Li, H. Wang, Q. Li, Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application, Electrochimica Acta 296(2019) 8-17. [7] T. Zhang, W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chemical Society Reviews 43(2014) 5982-5993. [8] B. Ma, R. Zhang, K. Lin, H. Liu, X. Wang, W. Liu, H. Zhan, Large-scale synthesis of noble-metal-free phosphide/CdS composite photocatalysts for enhanced H2 evolution under visible light irradiation, Chinese Journal of Catalysis 39(2018) 527-533. [9] J. Meng, Y. Li, A high H2 evolution rate under visible light of a CdS/TiO2@NiS catalyst due to a directional electron transfer between the phases, Chinese Journal of Chemical Engineering 27(2019) 544-548. [10] H. Wang, Y. Bian, J. Hu, L. Dai, Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation, Applied Catalysis B:Environmental 238(2018) 592-598. [11] M.R. Shaner, J.R. McKone, H.B. Gray, N.S. Lewis, Functional integration of Ni-Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution, Energy & Environmental Science 8(2015) 2977-2984. [12] M. Schreier, P. Gao, M.T. Mayer, J. Luo, T. Moehl, M.K. Nazeeruddin, S.D. Tilley, M. Grätzel, Efficient and selective carbon dioxide reduction on low cost protected Cu 2 O photocathodes using a molecular catalyst, Energy & Environmental Science 8(2015) 855-861. [13] W. Ong, L. Tan, Y. Ng, S. Yong, S. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability, Chemical Reviews 116(2016) 7159-7329. [14] J. Zhang, Z. Ma, Porous g-C3N4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochlorid, Chinese Journal of Chemical Engineering 26(2018) 753-760. [15] G. Xiao, Y. Wang, S. Xu, P. Li, C. Yang, Y. Jin, Q. Sun, H. Su, Superior adsorption performance of graphitic carbon nitride nanosheets for both cationic and anionic heavy metals from wastewater, Chinese Journal of Chemical Engineering 27(2019) 305-313. [16] Z. Li, S. Yang, J. Zhou, D. Li, X. Zhou, C. Ge, F. Yue, Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances, Chemical Engineering Journal 241(2014) 344-351. [17] L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant, Applied Catalysis B:Environmental 221(2018) 715-725. [18] Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media:Performance and reaction mechanism, Applied Catalysis B:Environmental 203(2017) 343-354. [19] S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, In Situ Ion Exchange Synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis, ACS Appl. Mater. Inter. 6(2014) 22116-22125. [20] S. Guo, Y. Tang, Y. Xie, C. Tian, Q. Feng, W. Zhou, B. Jiang, P-doped tubular g-C3N4 with surface carbon defects:universal synthesis and enhanced visible-light photocatalytic hydrogen production, Applied Catalysis B:Environmental 218(2017) 664-671. [21] D. Dai, H. Xu, L. Ge, C. Han, Y. Gao, S. Li, Y. Lu, In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation, Applied Catalysis B:Environmental 217(2017) 429-436. [22] A. Tanaka, S. Sakaguchi, K. Hashimoto, H. Kominami, Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light, ACS. Catal. 3(2013) 79-85. [23] Q. Liang, M. Zhang, C. Liu, S. Xu, Z. Li, Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis, Appl. Catalysis. A Gen. 519(2016) 107-115. [24] W. Chen, T.Y. Liu, T. Huang, X. Liu, X. Yang, Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity, Nanoscale 8(2016) 3711-3719. [25] S. Kumar, A. Kumar, V.N. Rao, A. Kumar, M.V. Shankar, V. Krishnan, Defect-rich MoS2 ultrathin nanosheets-coated nitrogen-doped ZnO nanorod heterostructures:an insight into in-situ-generated ZnS for enhanced photocatalytic hydrogen evolution, ACS Appl. Energy Mater. 2(2019) 5622-5634. [26] D. Chen, B. Li, Q. Pu, X. Chen, G. Wen, Z. Li, Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics, Journal of Hazardous Materials 373(2019) 303-312. [27] Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4:enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A 3(2015) 3862-3867. [28] S. Cao, Q. Huang, B. Zhu, J. Yu, Trace-level phosphorus and sodium co-doping of gC3N4 for enhanced photocatalytic H2 production, Journal of Power Sources 351(2017) 151-159. [29] H. Li, J. Zhao, Y. Geng, Z. Li, Y. Li, J. Wang, Construction of CoP/B doped g-C3N4 nanodots/g-C3N4 nanosheets ternary catalysts for enhanced photocatalytic hydrogen production performance, Applied Surface Science 496(2019) 143738. [30] R. Zhang, S. Niu, X. Zhang, Z. Jiang, J. Zheng, Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity, Applied Surface Science 489(2019) 427-434. [31] Qi. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Applied Catalysis B:Environmental 163(2015) 135-142. [32] Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation, Applied Surface Science 495(2019) 143555. [33] P. Zhao, Y. Li, L. Li, S. Bu, W. Fan, Oxygen vacancy-modified B-/N-codoped ZnGa2O4 nanospheres with enhanced photocatalytic hydrogen evolution performance in the absence of a Pt cocatalyst, The Journal of Physical Chemistry C 122(2018) 10737-10748. [34] M. Liu, P. Xia, L. Zhang, B. Cheng, J. Yu, Enhanced photocatalytic H2-production activity of g-C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst, ACS Sustainable Chemistry & Engineering 6(2018) 10472-10480. [35] D. Li, Y. Dong, G. Wang, P. Jiang, F. Zhang, H. Zhang, J. Li, J. Lyu, Y. Wang, Q. Liu, Controllable photochemical synthesis of amorphous Ni(OH)2 as hydrogen production cocatalyst using inorganic phosphorous acid as sacrificial agent, Chinese Journal of Catalysis 41(2020) 889-897. [36] Y. Xue, S. Min, F. Wang, Dye-sensitized black phosphorus nanosheets decorated with Pt cocatalyst for highly efficient photocatalytic hydrogen evolution under visible light, International Journal of Hydrogen Energy 44(2019) 21873-21881. [37] M. Akple, J. Low, S. Wageh, A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures, Appl. Surf. Sci. 358(2015) 196-203. [38] H. Zhang, A. Du, N.S. Gandhi, Y. Jiao, Y. Zhang, X. Lin, X. Lu, Y. Tang, Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors:a first-principles study, Applied Surface Science 455(2018) 1116-1122. [39] M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov, J.R. García, L. Palmisano, Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped gC3N4, Applied Catalysis B:Environmental 220(2018) 222-233. [40] M. Wu, J. Zhang, B. He, H. Wang, R. Wang, In-situ construction of coral-like porous Pdoped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution, Applied Catalysis B:Environmental 241(2019) 159-166. [41] R.J. Ran, T.Y. Ma, G. Gao, X. Du, S. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production, Energy Environ. Sci. 8(2015) 3708-3717. [42] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon -incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon 99(2016) 111-117. [43] A. Savateev, S. Pronkin, J.D. Epping, M. Willinger, C. Wolff, D. Neher, M. Antonietti, D. Dontsova, Potassium poly (heptazine imides) from aminotetrazoles:shifting band gaps of carbon nitride-like materials for more efficient solar hydrogen and oxygen evolution, Chem. Cat. Chem. 9(2017) 167-174. [44] J. Zhang, M. Zhang, C. Yang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface, Adv. Mater. 26(2014) 4121-4126. [45] F. Dong, Z.W. Zhao, T. Xiong, Z.L. Ni, W.D. Zhang, Y.J. Sun, W.K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, Appl. Mater. Interfaces 5(2013) 11392-11401. [46] Z. Chen, S. Pronkin, T.P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J.M. Thomas, J. Perez-Ramirez, M. Antonietti, D. Dontsova, Merging single-atom-dispersed silver and carbon nitride to a joint electronic system via copolymerization with silver tricyanomethanide, ACS Nano 10(2016) 3166-3175. [47] Q. Liang, Z. Li, Z.H. Huang, F. Kang, Q.H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production, Adv. Funct. Mater. 25(2015) 6885-6892. [48] G. Zhang, M. Zhang, X. Ye, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater. 26(2014) 805-809. [49] S. Cao, J. Low, J. Yu, Polymeric photocatalysts based on graphitic carbon nitride, Adv Mater 27(2015) 2150-2176. [50] D. Zhao, B. Sun, x. Li, L. Qin, S. Kang, D. Wang, Promoting visible light-driven hydrogen evolution over CdS nanorods using earth-abundant CoP as a cocatalyst, RSC Adv. 6(2016) 33120-33125. [51] S. Cao, Y. Chen, C.J. Wang, X.J. Lv, W.F. Fu, Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation, Chem. Commun. 51(2015) 8708-8711. [52] D. Gao, Q. Xu, D. Xue, Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets, Nanoscale 6(2014) 2577-2581. [53] S.Yang,Y.Gong,J.Zhang,Exfoliatedgraphiticcarbonnitridenanosheetsasefficientcatalysts for hydrogen evolution under visible light, Adv. Mater. 25(2013) 2452-2456. [54] Y. Lan, Z. Li, W. Xie, D. Li, G. Yan, S. Guo, C. Pan, J. Wu, In situ fabrication of I-doped Bi2O2CO3/g-C3N4 heterojunctions for enhanced photodegradation activity under visible light, Journal of Hazardous Materials 385(2020) 121622. [55] I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis Effect of processing temperature on structure and photocatalytic properties of gC3N4, Appl. Surf. Sci. 358(2015) 278-286. [56] P. Praus, L. Svoboda, M. Ritz, I. Troppova, M. Sihor, K. Koci, Graphitic carbon nitride:Synthesis, characterization and photocatalytic decomposition of nitrous oxide, Mater. Chem. Phys. 193(2017) 438-446. [57] Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, Q. Zhang, H. Xu, H. Li, Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution, RSC Adv. 5(2015) 101552-101562. [58] J. Di, J. Xia, X. Li, M. Ji, H. Xu, Z. Chen, H. Li, Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation, Carbon 107(2016) 1-10. |