[1] A. Marafi, H. Albazzaz, M.S. Rana, Hydroprocessing of heavy residual oil:Opportunities and challenges, Catal. Today 329(2019) 125-134. [2] J. Ancheyta, M.S. Rana, E. Furimsky MS, Hydroprocessing of heavy oil fractions, Catal. Today 109(1-4) (2005) 1-2. [3] X. Cao, X Yuan.Q., P. Liu, Development strategytrateqy engineering science for China's petrochemicaI and technology to 2035, Strat. Stud. Chin. Acad. Eng. 19(1) (2017) 57-63. [4] The Research Group of Chemical M, and Material Fields, PreIIminary study on impact of disruptive technologies in chemical, metallurgical, and materiaI fields, Strat. Stud. Chin. Acad. Eng. 20(06) (2018) 42-49. [5] J. Yang, J. Wan, H. Xian, The frontier technology:the slurry process technology for heavy oil/residue hydrocracking, Sci. Technol. Dev. 14(07) (2018) 94-99. [6] M.P. Dudukovic, Frontiers in reactor engineering, Science. 325(2009) 698-701. [7] A. Vaidheeswaran, T. Hibiki, Bubble-induced turbulence modeling for vertical bubbly flows, Int. J. Heat Mass Transf. 115(2017) 741-752. [8] S. K, T. S, M. K, Phenomenological model for bubble column reactors:prediction of gas hold-ups and volumetric mass transfer coefficients, Chem. Eng. J. 78(1) (2000) 21-28. [9] M. Opletal, P. Novotný, V. Linek, T. Moucha, M. Kordač, Gas suction and mass transfer in gas-liquid up-flow ejector loop reactors. Effect of nozzle and ejector geometry, Chem. Eng. J. 353(2018) 436-452. [10] H. Tian, S. Pi, Y. Feng, Z. Zhou, F. Zhang, Z. Zhang, One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor, Chem. Eng. J. 386(2019). [11] M. Ide, Mass transfer characteristics in gas bubble dispersed phase generated by plunging jet containing small solute bubbles, Chem. Eng. Sci. 56(21) (2001) 6225-6231. [12] A.A. Kulkarni, Mass transfer in bubble column reactors:Effect of bubble size distribution, Ind. Eng. Chem. Res. 46(7) (2007) 2205-2211. [13] C.B. Vik, J. Solsvik, M. Hillestad, H.A. Jakobsen, Interfacial mass transfer limitations of the Fischer-Tropsch synthesis operated in a slurry bubble column reactor at industrial conditions, Chem. Eng. Sci. 192(2018) 1138-1156. [14] L. Zhao, M. Lv, Z. Tang, T. Tang, Y. Shan, Z.C. Pan, Y.H. Sun, Enhanced photo bio-reaction by multiscale bubbles, Chem. Eng. J. 354(2018) 304-313. [15] J.Y. Liu, X.H. Tan, Z. Fan, X.T. You, Z. Li, J.H. Zhao, Prediction on droplet sauter mean diameter in gas-liquid mist flow based on droplet fractal theory, Math. Probl. Eng. 2015(2015) 1-4. [16] X.H. Tan, J.Y. Liu, X.P. Li, G.D. Zhang, C. Tang, A fractal model for the maximum droplet diameter in gas-liquid mist flow, Math. Probl. Eng. 2013(2013) 1-6. [17] S. Kajita, A.M. Ito, N. Ohno, Fractality and growth of He bubbles in metals, Phys. Lett. A 381(29) (2017) 2355-2362. [18] M. Mokhtari, J. Chaouki, New technique for simultaneous measurement of the local solid and gas holdup by using optical fiber probes in the slurry bubble column, Chem. Eng. J. 358(2019) 831-841. [19] X. Luo, D.J. Lee, R. Lau, G. Yang, L.S. Fan, Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns, AIChE J. 45(4) (1999) 665-680. [20] A. Esmaeili, C. Guy, J. Chaouki, Local hydrodynamic parameters of bubble column reactors operating with non-Newtonian liquids:Experiments and models development, AIChE J. 62(4) (2016) 1382-1396. [21] A. Esmaeili, C. Guy, J. Chaouki, The effects of liquid phase rheology on the hydrodynamics of a gas-liquid bubble column reactor, Chem. Eng. Sci. 129(2015) 193-207. [22] A. Esmaeili, S. Farag, C. Guy, J. Chaouki, Effect of elevated pressure on the hydrodynamic aspects of a pilot-scale bubble column reactor operating with non-Newtonian liquids, Chem. Eng. J. 288(2016) 377-389. [23] R. Schäfer, C. Merten, G. Eigenberger, Bubble size distributions in a bubble column reactor under industrial conditions, Exp. Thermal Fluid Sci. 26(6) (2002) 595-604. [24] Y. Lau, N. Deen, J. Kuipers, Development of an image measurement technique for size distribution in dense bubbly flows, Chem. Eng. Sci. 94(5) (2013) 20-29. [25] Y.T. Shah, S. Joseph, D. Smith, Two-bubble class model for churn turbulent bubblecolumn reactor, Ind. Eng. Chem. Res. 24(4) (1985) 1096-1104. [26] S. Patel, J. Daly, D. Bukur, Bubble-size distribution in Fischer-Tropsch-derived waxes in a bubble column, AIChE J. 36(1) (1990) 93-105. [27] K. Bae, G.S. Go, N.S. Noh, Y.I. Lim, J. Bae, D.H. Lee, Bubble characteristics in pressurized bubble column associated with micro-bubble dispersion, Chem. Eng. J. 386(2020) 121339. [28] L. Gemello, C. Plais, F. Augier, A. Cloupet, D.L. Marchisio, Hydrodynamics and bubble size in bubble columns:Effects of contaminants and spargers, Chem. Eng. Sci. 184(2018) 93-102. [29] P. Maximiano Raimundo, A. Cloupet, A. Cartellier, D. Beneventi, F. Augier, Hydrodynamics and scale-up of bubble columns in the heterogeneous regime:Comparison of bubble size, gas holdup and liquid velocity measured in 4 bubble columns from 0.15 m to 3 m in diameter, Chem. Eng. Sci. 198(2019) 52-61. [30] P.M. Raimundo, A. Cartellier, D. Beneventi, A. Forret, F. Augier, A new technique for in-situ measurements of bubble characteristics in bubble columns operated in the heterogeneous regime, Chem. Eng. Sci. 155(2016) 504-523. [31] X. Guan, N. Yang, Bubble properties measurement in bubble columns:From homogeneous to heterogeneous regime, Chem. Eng. Res. Des. 127(2017) 103-112. [32] F. Hernandez-Alvarado, D.V. Kalaga, D. Turney, S. Banerjee, J.B. Joshi, M. Kawaji, Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion, Chem. Eng. Sci. 168(2017) 403-413. [33] L.C. Mutharasu, D.V. Kalaga, M. Sathe, D.E. Turney, D. Griffin, X.L. Li, M. Kawaji, K. Nandakumar, J.B. Joshi, Experimental study and CFD simulation of the multiphase flow conditions encountered in a novel down-flow bubble column, Chem. Eng. J. 350(2018) 507-522. [34] Y. Mizushima, A. Sakamoto, T. Saito, Measurement technique of bubble velocity and diameter in a bubble column via single-tip optical-fiber probing with judgment of the pierced position and angle, Chem. Eng. Sci. 100(2013) 98-104. [35] O.N. Manjrekar, M.P. Dudukovic, Application of a 4-point optical probe to a slurry bubble column reactor, Chem. Eng. Sci. 131(2015) 313-322. [36] T. Yang, S. Geng, C. Yang, Q. Huang, Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification, Chem. Eng. Sci. 184(2018) 126-133. [37] S. Shu, D. Vidal, F. Bertrand, J. Chaouki, Multiscale multiphase phenomena in bubble column reactors:A review, Renew. Energy 141(2019) 613-631. [38] X. Xu, Q. Yang, C. Wang, H. Wang, Impact of bubble coalescence on separation performance of a degassing hydrocyclone, Sep. Purif. Technol. 152(2015) 80-86. [39] W. Liu, B. Bai, Transition from bubble flow to slug flow along the streamwise direction in a gas-liquid swirling flow, Chem. Eng. Sci. 202(2019) 392-402. [40] X. Xu, X.L. Ge, Y.D. Qian, H.L. Wang, Q. Yang, Bubble-separation dynamics in a planar cyclone:experiments and CFD simulations, AIChE J. 64(7) (2018) 2689-2701. [41] Y. Gao, D. Hong, H. Lu, Y. Cheng, L. Wang, X. Li, Gas holdup and liquid velocity distributions in the up flow jet-loop reactor, Chem. Eng. Res. Des. 136(2018) 94-104. [42] A. Bombač, Z. Rek, J. Levec, Void fraction distribution in a bisectional bubble column reactor, AIChE J. 65(4) (2019) 1186-1197. [43] X. Xu, X. Ge, Y. Qian, B. Zhang, H. Wang, Q. Yang, Effect of nozzle diameter on bubble generation with gas self-suction through swirling flow, Chem. Eng. Res. Des. 138(2018) 13-20. [44] H. Seo, A.M. Aliyu, K.C. Kim, Enhancement of momentum transfer of bubble swarms using an ejector with water injection, Energy. 162(2018) 892-909. [45] M. Honkanen, H. Eloranta, P. Saarenrinne, Digital imaging measurement of dense multiphase flows in industrial processes, Flow Meas. Instrum. 21(2010) 25-32. [46] D.R. Overby, M. Johnson, Studies on depth-of-field effects in microscopy supported by numerical simulations, J. Microsc. 220(2005) 176-189. [47] H. Xiao, S. Geng, A. Chen, C. Yang, F. Gao, T.B. He, Q.S. Huang, Bubble formation in continuous liquid phase under industrial jetting conditions, Chem. Eng. Sci. 200(2019) 214-224. [48] B. Liu, Q. Xiao, N. Sun, P. Gao, F. Fan, B. Sunden, B. Effect of gas distributor on gas-liquid dispersion and mass transfer characteristics in stirred tank, Chem. Eng. Res. Des. 145(2019) 314-322. [49] H. Dhaouadi, S. Poncin, J.M. Hornut, N. Midoux, Gas-liquid mass transfer in bubble column reactor:analytical solution and experimental confirmation, Chem. Eng. Process. Process Intensif. 47(4) (2008) 548-556. [50] Riet KVt, Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels, Ind. Eng. Chem. Res. 18(3) (1979) 357-364. [51] M. Borgbjerg Jensen, P. Lindholm Pedersen, L. Ditlev Mørck Ottosen, J. Fauché, M. O'Brien Smed, K. Fischer, In silico screening of venturi designs and operational conditions for gas-liquid mass transfer applications, Chem. Eng. J. 383(2020), 123119. [52] C. Kang, W. Zhang, N. Mao, Y. Zhang, Effects of the wake flow on bubble patterns downstream of a cylindrical nozzle, Chem. Eng. Res. Des. 145(2019) 128-140. [53] A. Capponi, E.W. Llewellin, Experimental observations of bubbling regimes at in-line multi-orifice bubblers, Int. J. Multiphase Flow 114(2019) 66-81. [54] S. Zhou, D. Liu, Y. Cai, Y. Yao, Y. Che, Z. Liu, Multi-scale fractal characterizations of lignite, subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry, J. Natur. Gas Sci. Eng. 44(2017) 338-350. [55] T. Yin, D. Liu, Y. Cai, Y. Zhou, Y. Yao, Size distribution and fractal characteristics of coal pores through nuclear magnetic resonance cryoporometry, Energy Fuel 31(8) (2017) 7746-7757. [56] K.N. Ramakrishnan, Fractal nature of particle size distribution, J. Mater. Sci. Lett. 19(2000) 1077-1080. [57] S. Ersahin, H. Gunal, T. Kutlu, B. Yetgin, S. Coban, Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution, Geoderma. 136(3-4) (2006) 588-597. [58] M. Mei, F. Hu, C. Han, Y. Cheng, Time-averaged droplet size distribution in steadystate dropwise condensation, Int. J. Heat Mass Transf. 88(2015) 338-345. [59] M.F. Chandler, Y. Teng, U.O. Koylu, Diesel engine particulate emissions:a comparison of mobility and microscopy size measurements, Proc. Combust. Inst. 31(2) (2007) 2971-2979. [60] L. Han, M.H. Al-Dahhan, Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs, Chem. Eng. Sci. 62(1-2) (2007) 131-139. [61] F. Möller, A. MacIsaac, Y.M. Lau, E. Schleicher, U. Hampel, M. Schubert, Advanced analysis of liquid dispersion and gas-liquid mass transfer in a bubble column with dense vertical internals, Chem. Eng. Res. Des. 134(2018) 575-588. |