[1] N.Y. Chen, W.W. Kaeding, F.G. Dwyer, Para-directed aromatic reactions over shapeselective molecular sieve zeolite catalysts, Chem. 11(1980) 6783-6784. [2] G. Zhao, J. Teng, Z. Xie, W. Jin, W. Yang, Q. Chen, Y. Tang, Effect of phosphorus on HZSM-5 catalyst for C 4-olefin cracking reactions to produce propylene, J. Catal. 248(2007) 29-37. [3]. V.D.B. He,B.M. Weckhuysen, Phosphorus promotion and poisoning in zeolite-based materials:synthesis, characterisation and catalysis, Chem. Soc. Rev. 44(2015) 7406-7428. [4] Y. Chu, X. Gao, X. Zhang, G. Xu, G. Li, A. Zheng, Identifying the effective phosphorous species over modified P-ZSM-5 zeolite:a theoretical study, Phys.Chem.Chem.Phys. 20(2018) 11702-11712. [5] G. Lischke, R. Eckelt, H.G. Jerschkewitz, B. Parlitz, E. Schreier, W. Storek, B. Zibrowius, G. Oehlmann, ChemInform abstract:spectroscopic and physicochemical characterization of P-modified H-ZSM-5, J. Catal. 132(1991) 229-243. [6] J. Zhuang, D. Ma, G. Yang, Z. Yan, X. Liu, X. Liu, X. Han, X. Bao, P. Xie, Z. Liu, Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking, J. Catal. 228(2004) 234-242. [7] T. Blasco, A. Corma, J. Martínez-Triguero, Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition, J. Catal. 237(2006) 267-277. [8] G. Caeiro, P. Magnoux, J.M. Lopes, F.R. Ribeiro, S.M.C. Menezes, A.F. Costa, H.S. Cerqueira, Stabilization effect of phosphorus on steamed H-MFI zeolites, Appl. Catal. A-Gen. 314(2006) 160-171. [9] L. Dan, W.C. Choi, C.W. Lee, Y.K. Na, J.L. You, C.H. Shin, K.P. Yong, Steaming and washing effect of P/HZSM-5 in catalytic cracking of naphtha, Catal. Today 164(2011) 154-157. [10] A. Corma, J. Mengual, P.J. Miguel, Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene:micro and macroscopic implications of the presence of steam, Appl. Catal. A-Gen. 417-418(2012) 121-134. [11] J. Ding, M. Wang, L. Peng, N. Xue, Y. Wang, M.Y. He, Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance, Appl. Catal. A-Gen. 503(2015) 147-155. [12] W.W. Keading, C. Chu, L.B. Young, S.A. Butter, ChemInform abstract:shape-selective reactions with zeolite catalysts. Part 2. Selective disproportionation of toluene to produce benzene and p-xylene, J. Catal. 12(1981) 392-398. [13] E.T. Vogt, B.M. Weckhuysen, Fluid catalytic cracking:recent developments on the grand old lady of zeolite catalysis, Chem. Soc. Rev. 44(2015) 7342-7370. [14] N. Xue, X. Chen, N. Lei, X. Guo, W. Ding, C. Yi, G. Min, Z. Xie, Understanding the enhancement of catalytic performance for olefin cracking:hydrothermally stable acids in P/HZSM-5, J. Catal. 248(2007) 20-28. [15] G. Zhao, J. Teng, Z. Xie, W. Jin, T. Yi, Effect of phosphorus on HZSM-5 catalyst for C 4-olefin cracking reactions to produce propylene, J. Catal. 248(2007) 29-37. [16] G. Jiang, L. Zhang, Z. Zhao, X. Zhou, A. Duan, C. Xu, J. Gao, Highly effective P-modified HZSM-5 catalyst for the cracking of C 4 alkanes to produce light olefins, Appl. Catal. A-Gen. 340(2008) 176-182. [17] N. Xue, L. Nie, D. Fang, X. Guo, J. Shen, W. Ding, Y. Chen, Synergistic effects of tungsten and phosphorus on catalytic cracking of butene to propene over HZSM-5, Appl. Catal. A-Gen. 352(2009) 87-94. [18] M. Derewinski, P. Sarv, X. Sun, S. Müller, A.C.V. Veen, J.A. Lercher, Reversibility of the modification of HZSM-5 with phosphate anions, J. Phys. Chem. C 118(2014) 6122-6131. [19] V.D.B. He, L.R. Aramburo, B. Arstad, J.J. Dynes, J. Wang, B.M. Weckhuysen, Phosphatation of zeolite H-ZSM-5:a combined microscopy and spectroscopy study, Chemphyschem. 15(2014) 283-292. [20] V.D.B. He, F. Meirer, S. Kalirai, J. Wang, B.M. Weckhuysen, Hexane cracking over steamed phosphated zeolite H-ZSM-5:promotional effect on catalyst performance and stability, Chem-Eur. J. 20(2014) 16922-16932. [21] S.M.C.D. Menezes, Y.L. Lam, K. Damodaran, M. Pruski, Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties, Micropor. Mesopor. Mat. 95(2006) 286-295. [22] D. Zhang, R. Wang, X. Yang, Effect of P content on the catalytic performance of Pmodified HZSM-5 catalysts in dehydration of ethanol to ethylene, Catal. Lett. 124(2008) 384-391. [23] Y.J. Lee, J.M. Kim, J.W. Bae, C.H. Shin, K.W. Jun, Phosphorus induced hydrothermal stability and enhanced catalytic activity of ZSM-5 in methanol to DME conversion, Fuel. 88(2009) 1915-1921. [24] K. Ramesh, L.M. Hui, Y.F. Han, A. Borgna, Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration, Catal. Commun. 10(2009) 567-571. [25] K. Ramesh, C. Jie, Y.F. Han, A. Borgna, Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration, Ind. Eng. Chem. Res. 49(2010) 4080-4090. [26] Y. Ji, H. Yang, Q. Zhang, W. Yan, Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane, J. Solid State Chem. 251(2017) 7-13. [27] M.J.B. Cardoso, D.D.O. Rosas, L.Y. Lau, Surface P and Al distribution in P-modified ZSM-5 zeolites, Adsorption. 11(2005) 577-580. [28] W.W. Kaeding, S.A. Butter, Production of chemicals from methanol:I. Low molecular weight olefins, J. Catal. 61(1980) 155-164. [29] G. Seo, R. Ryoo, 31 P, 27 Al, and 129 Xe NMR study of phosphorus-impregnated HZSM-5 zeolite catalysts, J. Catal. 21(1990) 224-230. [30] G. Yang, J. Zhuang, Y. Wang, D. Zhou, M. Yang, X. Liu, X. Han, X. Bao, Enhancement on the hydrothermal stability of ZSM-5 zeolites by the cooperation effect of exchanged lanthanum and phosphoric species, J. Mol. Struct. 737(2005) 271-276. [31] K. Damodaran, J.W. Wiench, S.M.C.D. Menezes, Y.L. Lam, J. Trebosc, J.P. Amoureux, M. Pruski, Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy, Micropor. Mesopor. Mat. 95(2006) 296-305. [32] M. Göhlich, W. Reschetilowski, S. Paasch, Spectroscopic study of phosphorus modified H-ZSM-5, Micropor. Mesopor. Mat. 142(2011) 178-183. [33] H.E.V.D. Bij, D. Cicmil, J. Wang, F. Meirer, F.F.M.F.D. Groot, B.M. Weckhuysen, Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy, J. Am. Chem. Soc. 136(2014) 17774-17787. [34] A. Zheng, S. Li, S.B. Liu, F. Deng, Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy, Acc. Chem. Res. 49(2016) 655-663. [35] A. Zheng, S.B. Liu, F. Deng, 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts, Chem. Rev. 117(2017) 12475-12531. [36] E.L. Wu, S.L. Lawton, D.H. Olson, A.C. Rohrman, G.T. Kokotailo, ZSM-5-type materials. Factors affecting crystal symmetry, J. Phys. Chem. A 83(1979) 2777-2781. [37] X. Gao, Z. Tang, G. Lu, G. Cao, D. Li, Z. Tan, Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication, Solid State Sci. 12(2010) 1278-1282. [38] H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J.N. Kondo, T. Tatsumi, Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking, Appl. Catal. A-Gen. 449(2012) 188-197. [39] S.M. Abubakar, D.M. Marcus, J.C. Lee, J.O. Ehresmann, C.Y. Chen, P.W. Kletnieks, D.R. Guenther, M.J. Hayman, M. Pavlova, J.B. Nicholas, Structural and mechanistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion, Langmuir. 22(2006) 4846-4852. [40] M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, M. Matsukata, Alkali-treatment technique-new method for modification of structural and acidcatalytic properties of ZSM-5 zeolites, Appl. Catal. A-Gen. 219(2001) 33-43. [41] J.S. Jung, J.W. Park, G. Seo, Catalytic cracking of n-octane over alkali-treated MFI zeolites, Appl. Catal. A-Gen. 288(2005) 149-157. [42] Y.Q. Song, Y.L. Feng, F. Liu, C.L. Kang, X.L. Zhou, L.Y. Xu, G.X. Yu, Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance, J. Mol. Catal. A-Chem. 310(2009) 130-137. [43] K. Sadowska, A. Wach, Z. Olejniczak, P. Kuśtrowski, J. Datka, Hierarchic zeolites:zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide, Micropor. Mesopor. Mat. 167(2013) 82-88. [44] F. Thibault-Starzyk, I. Stan, S. Abelló, A. Bonilla, K. Thomas, C. Fernandez, J.-P. Gilson, J. Pérez-Ramírez, Quantification of enhanced acid site accessibility in hierarchical zeolites-the accessibility index, J. Catal. 264(2009) 11-14. [45] J. Caro, M. Buelow, M. Derewinski, J. Haber, M. Hunger, J. Kaerger, H. Pfeifer, W. Storek, B. Zibrowius, ChemInform abstract:NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid, Cheminform. 21(1990) 367-375. [46] N. Xue, R. Olindo, J.A. Lercher, Impact of forming and modification with phosphoric acid on the acid sites of HZSM-5, J. Phys. Chem. C 114(2010) 15763-15770. [47] S.M. Abubakar, D.M. Marcus, J.C. Lee, J.O. Ehresmann, C.Y. Chen, P.W. Kletnieks, D.R. Guenther, M.J. Hayman, M. Pavlova, J.B. Nicholas, Structural and mechanistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion, Langmuir. 22(2006) 4846-4852. [48] P. Zhao, B. Boekfa, T. Nishitoba, N. Tsunoji, M. Ehara, Theoretical study on 31P NMR chemical shifts of phosphorus-modified CHA zeolites, Micropor. Mesopor. Mat. 294(2019) 109908-109920. |