[1] M.R. Amin, S. Mahbub, M.R. Molla, M.M. Alam, M.F. Hossain, S. Rana, M.A. Rub, M.A. Hoque, D. Kumar, Phase separation and thermodynamic behavior of triton x-100 in occurrence of levofloxacin hemihydrates:influence of additives, J. Chem. Eng. Data 64(2019) 2750-2758. [2] M. Rahman, S.J. Anwar, M.R. Molla, S. Rana, M.A. Hoque, M.A. Rub, M.A. Khan, D. Kumar, Influence of alcohols and varying temperatures on the interaction between drug ceftriaxone sodium trihydrate and surfactant:a multi-techniques study, J. Mol. Liq. 292(2019) 111322. [3] S. Mahbub, S. Akter, Luthfunnessa, P. Akter, M.A. Hoque, M.A. Rub, D. Kumar, Y.G. Alghamdi, A.M. Asiri, H. Džudžević-Čančar, Effects of temperature and polyols on the ciprofloxacin hydrochloride-mediated micellization of sodium dodecyl sulfate, RSC Adv 10(2020) 14531-14541. [4] M.A. Hoque, F. Ahmed, M.A. Halim, M.R. Molla, S. Rana, M.A. Rahman, M.A. Rub, Influence of salt, temperature on the interaction of bovine serum albumin with cetylpyridinium chloride:insights from experimental and molecular dynamics simulation, J. Mol. Liq. 260(2018) 121-130. [5] M. Lashkarbolooki, R. Parvizi, S. Ayatollahi, E.G. Raeeni, Effect of salts and their interaction with ingenious surfactants on the interfacial tension of crude oil/ionic solution, Chinese J. Chem. Eng. 28(2020) 224-235. [6] X. Zhao, Y. Shang, H. Liu, Y. Hu, J. Jiang, Interaction of DNA with cationic gemini surfactant trimethylene-1,3-bis (dodecyldimethyl-ammonium bromide) and anionic surfactant SDS mixed system, Chin. J. Chem. Eng. 16(2008) 923-928. [7] D. Kumar, M.A. Rub, Role of cetyltrimethylammonium bromide (CTAB) surfactant micelles on kinetics of[Zn(Ⅱ)-Gly-Leu]+ and ninhydrin, J. Mol. Liq. 274(2019) 639-645. [8] M.Z. Hasan, S. Mahbub, M.A. Hoque, M.A. Rub, D. Kumar, Investigation of mixed micellization study of sodium dodecyl sulfate and tetradecyltrimethylammonium bromide mixtures at different compositions:effect of electrolytes and temperatures, J. Phys. Org. Chem. 33(2020) e4047. [9] H. Siddiqui, M. Kamil, M. Panda, Kabir-ud-Din, Solubilization of phenanthrene and fluorene in equimolar binary mixtures of gemini/conventional surfactants, Chin. J. Chem. Eng. 22(2014) 1009-1015. [10] D. Attwood, A. Florence, Surfactant Systems-Their Chemistry, Pharmacy, Biology, Chapman, Hall, New York, 1983. [11] D.L. Cocke, R. Schennach, Z. Yu, The surface properties of tetradecyltrimethylammonium bromide observed by capillary electrophoresis, J. Chromatogr. Sci. 40(2002) 187-190. [12] S. Joshi, S. Perera, J. Gilbert, C.M. Smith, A. Mariana, C.P. Gordon, J.A. Sakoff, A. McCluskey, P.J. Robinson, A.W. Braithwaite, M. Chircop, The dynamin inhibitors MiTMAB and OcTMAB induce cytokinesis failure and inhibit cell proliferation in human cancer cells, Mol. Cancer Ther. 9(2010) 1995-2006. [13] S.M.A. Ahsan, M.R. Amin, S. Mahbub, M.R. Molla, S. Aktar, M.A. Rub, M.A. Hoque, M.N. Arshad, M.A. Khan, Interaction of ciprofloxacin hydrochloride with sodium dodecyl sulfate in aqueous/electrolytes solution at different temperatures and compositions, Chin. J. Chem. Eng. 28(2020) 216-223. [14] M.A. Hoque, M.M. Alam, M.R. Molla, S. Rana, M.A. Rub, M.A. Halim, M.A. Khan, F. Akhtar, Interaction of cetyltrimethylammonium bromide with drug in aqueous/electrolyte solution:a conductometric and molecular dynamics method study, Chin. J. Chem. Eng. 26(2018) 159-167. [15] T.A. Horbett, J.L. Brash, Proteins at Interfaces. Ⅱ. Fundamentals, Applications, American Chemical Society, Washington, DC, 1995. [16] Z. Huang, T. Gengenbach, J. Tian, W. Shen, G. Garnier, Effect of bovine serum albumin treatment on the aging and activity of antibodies in paper diagnostics, Front. Chem. 6(2018) 1-6. [17] S. Servagent-Noinville, M. Revault, H. Quiquampoix, M.H. Baron, Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces:FTIR analysis, J. Colloid Interface Sci. 221(2000) 273-283. [18] Y. Xiao, S.N. Isaacs, Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)-not all BSAs are alike, J. Immunol. Methods 384(2012) 148-151. [19] J. Nakanishi, Y. Kikuchi, T. Takarada, H. Nakayama, K. Yamaguchi, M. Maeda, Photoactivation of a substrate for cell adhesion under standard fluorescence microscopes, J. Am. Chem. Soc. 126(2004) 16314-16315. [20] E. Wedege, G. Svenneby, Effects of the blocking agents bovine serum albumin and Tween 20 in different buffers on immunoblotting of brain proteins and marker proteins, J. Immunol. Methods 88(1986) 233-237. [21] Y.L. Jeyachandran, E. Mielczarski, B. Rai, J.A. Mielczarski, Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces, Langmuir 25(2009) 11614-11620. [22] T. Kosa, T. Maruyama, M. Otagiri, Species differences of serum albumins:I. Drug binding sites, Pharm. Res. 14(1997) 1607-1612. [23] A.M. Seddon, P. Curnow, P.J. Booth, Membrane proteins, lipids and detergents:not just a soap opera, Biochim. Biophys. Acta Biomembr. 1666(2004) 105-117. [24] R. Theodore, W. Randolph, L.T.S. Jones, Surfactant-Protein Interactions, in Rational Design of Stable Protein Formulations, Springer Science & Business Media, New York, 2002. [25] G. Dravecz, T.Z. Jánosi, D. Beke, D.Á. Major, G. Károlyházy, J. Erostyák, K. Kamarás, Á. Gali, Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers, Phys. Chem. Chem. Phys. 20(2018) 13419-13429. [26] S. Datta, M. Halder, Detailed scrutiny of the anion receptor pocket in subdomain ⅡA of serum proteins toward individual response to specific ligands:HSA pocket resembles flexible biological slide-wrench unlike BSA, J. Phys. Chem. B 118(2014) 6071-6608. [27] N. Scholz, T. Behnke, U. Resch-Genger, Determination of the critical micelle concentration of neutral and ionic surfactants with fluorometry, conductometry, and surface tension-a method comparison, J. Fluoresc. 28(2018) 465-476. [28] J. Nayem, Z. Zhang, A. Tomlinson, I.E. Zarraga, N.J. Wagner, Y. Liu, Micellar morphology of polysorbate 20 and 80 and their ester fractions in solution via small-angle neutron scattering, J. Pharm. Sci. 109(2020) 1498-1508. [29] G.A. Rothbauer, E.A. Rutter, C. Reuter-Seng, S. Vera, E.J. Billiot, Y. Fang, F.H. Billiot, K.F. Morris, Nuclear magnetic resonance investigation of the effect of pH on micelle formation by the amino acid-based surfactant undecyl l-phenylalaninate, J. Surfact. Deterg. 21(2018) 139-153. [30] V.K. Aswal, P.S. Goyal, Role of different counterions and size of micelle in concentration dependence micellar structure of ionic surfactants, Chem. Phys. Lett. 368(2003) 59-65. [31] C.C. Hsiao, T.Y. Wang, H.K. Tsao, Counterion condensation and release in micellar solutions, J. Chem. Phys. 122(2005) 144702. [32] S. Aktar, M. Saha, S. Mahbub, M.A. Halim, M.A. Rub, M.A. Hoque, D.M.S. Islam, D. Kumar, Y.G. Alghamdi, A.M. Asiri, Influence of polyethylene glycol on the aggregation/clouding phenomena of cationic and non-ionic surfactants in attendance of electrolytes (NaCl & Na2SO4):an experimental and theoretical analysis, J. Mol. Liq. 306(2020) 112880. [33] M.A. Rahim, S. Mahbub, M.K. Islam, S.M.A. Ahsan, S. Rana, M.A. Rub, A. Khan, M.A. Hoque, Influence of different additives on the interaction of quinolone antibiotic drug with surfactant:conductivity and cloud point measurement study, J. Surfact. Deterg. 23(2020) 457-470. [34] C.C. Ruiz, Thermodynamics of micellization of tetradecyltrimethylammonium bromide in ethylene glycol-water binary mixtures, Colloid Polym. Sci. 277(1999) 701-707. [35] A. Domínguez, A. Fernández, N. Gonzalez, E. Iglesias, L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques, J. Chem. Educ. 74(1997) 1227-1231. [36] E. Fuguet, C. Ràfols, M. Rosés, E. Bosch, Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems, Anal. Chim. Acta 548(2005) 95-100. [37] S. Kundu, S. Panigrahi, A. Pal, S.K. Ghosh, S. Nath, S. Praharaj, S. Basu, T. Pal, Dye-micelle aggregate formation for effective photobleaching, Dyes Pigments 69(2006) 177-184. [38] S. Mahbub, M.L. Mia, T. Roy, P. Akter, A.K.M.R. Uddin, M.A. Rub, M.A. Hoque, A.M. Asiri, Influence of ammonium salts on the interaction of fluoroquinolone antibiotic drug with sodium dodecyl sulfate at different temperatures and compositions, J. Mol. Liq. 297(2020) 111583. [39] S. Mahbub, M.R. Molla, M. Saha, I. Shahriar, M.A. Hoque, M.A. Halim, M.A. Rub, M.A. Khan, N. Azum, Conductometric and molecular dynamics studies of the aggregation behavior of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) in aqueous and electrolytes solution, J. Mol. Liq. 283(2019) 263-275. [40] S. Mahbub, M.A. Rub, M.A. Hoque, M.A. Khan, D. Kumar, Micellization behavior of cationic and anionic surfactant mixtures at different temperatures:effect of sodium carbonate and sodium phosphate salts, J. Phys. Org. Chem. 32(2019) e3967. [41] B.L. Bales, R. Zana, Characterization of micelles of quaternary ammonium surfactants as reaction media I:dodeclytrimethylammonium bromide and chloride, J. Phys. Chem. B 106(2002) 1926-1939. [42] I.M. Umlong, K. Ismail, Micellization behaviour of sodium dodecyl sulfate in different electrolyte media, Colloids Surf. A Physicochem. Eng. Asp. 299(2007) 8-14. [43] N. Erdinç, S. Göktürk, M. Tunçay, Interaction of epirubicin HCl with surfactants:effect of NaCl and glucose, J. Pharm. Sci. 93(2004) 1566-1576. [44] F. Jalali, M. Shamsipur, N. Alizadeh, Conductance study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in (water + cosolvent), J. Chem. Thermodyn. 32(2000) 755-765. [45] B.L. Carvalho, G. Briganti, S.H. Chen, Lowering of the miscibility gap in the dioctanoylphosphatidylcholine-water system by addition of urea, J. Phys. Chem. 93(1989) 4282-4286. [46] L.G. Dias, F.H. Florenzano, W.F. Reed, M.S. Baptista, S.M.B. Souza, E.B. Alvarez, H. Chaimovich, I.M. Cuccovia, C.L.C. Amaral, C.R. Brasil, L.S. Romsted, M.J. Politi, Effect of urea on biomimetic systems:neither water 3-D structure rupture nor direct mechanism, simply a more "polar water", Langmuir 18(2002) 319-324. [47] S. Kumar, Z.A. Khan, N. Parveen, Kabir-ud-Din, Influence of different ureas on aggregational properties of aqueous surfactant systems, Colloids Surf. A Physicochem. Eng. Asp. 268(2005) 45-51. [48] S. Kumar, N. Parveen, Kabir-Ud-Din, Effect of urea addition on micellization and the related phenomena, J. Phys. Chem. B 108(2004) 9588-9592. [49] H.N. Singh, S.M. Saleem, R.P. Singh, Micelle formation of ionic surfactants in polar nonaqueous solvents, J. Phys. Chem. 84(1980) 2191-2194. [50] M.A. Hoque, S. Mahbub, M.A. Rub, S. Rana, M.A. Khan, Experimental and theoretical investigation of micellization behavior of sodium dodecyl sulfate with cetyltrimethylammonium bromide in aqueous/urea solution at various temperatures, Korean J. Chem. Eng. 35(2018) 2269-2282. [51] J.N. Israelachvili, Intermolecular, Surface Forces, 2nd Edition, John Wiley & Sons, New York, 1995. [52] C. Tanford, The Hydrophobic Effect. The Formation of Micelles, Biological Membranes, 2nd Edition, Wiley, New York, 1987. [53] D.R. Robinson, W.P. Jencks, The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds, J. Am. Chem. Soc. 87(1965) 2462-2470. [54] D.B. Watlaufer, S.K. Malik, L. Stoller, R.L. Coffin, Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies, J. Am. Chem. Soc. 86(1964) 508-514. [55] O. Enea, C. Jolicoeur, Heat capacities and volumes of several oligopeptides in ureawater mixtures at 25 degree C. Some implications for protein unfolding, J. Phys. Chem. 86(1982) 3870-3881. [56] A. Chakraborty, M. Sarkar, S. Basak, Stabilizing effect of low concentrations of urea on reverse micelles, J. Colloid Interface Sci. 287(2005) 312-317. [57] J. Aguiar, J.A. Molina-Bol'ıvar, J.M. Peula-Garc'ıa, C.C. Ruiz, Thermodynamics and micellar properties of tetradecyltrimethylammonium bromide in formamide-water mixtures, J. Colloid Interface Sci. 255(2002) 382-390. [58] A. Ali, S. Uzair, N.A. Malik, M. Ali, Study of interaction between cationic surfactants and cresol red dye by electrical conductivity and spectroscopy methods, J. Mol. Liq. 196(2014) 395-403. [59] F. Akhtar, M.A. Hoque, M.A. Khan, Interaction of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulfate, J. Chem. Thermodyn. 40(2008) 1082-1086. [60] T. Inoue, H. Ohmura, D. Murata, Cloud point temperature of polyoxyethylenetype nonionic surfactants and their mixtures, J. Colloid Interface Sci. 258(2003) 374-382. [61] B. Kumar, D. Tikariha, K.K. Ghosh, N. Barbero, P. Quagliotto, Effect of polymers and temperature on critical micelle concentration of some gemini and monomeric surfactants, J. Chem. Thermodyn. 62(2013) 178-185. [62] A.A. Rafati, S. Azizian, M. Chahardoli, Conductometric studies of interaction between anionic dyes and cetylpyridinium bromide in water-alcohol mixed solvents, J. Mol. Liq. 137(2008) 80-87. [63] S. Sharma, K. Kumar, S. Chauhan, M.S. Chauhan, Conductometric and spectrophotometric studies of self-aggregation behavior of streptomycin sulphate in aqueous solution:effect of electrolytes, J. Mol. Liq. 297(2020) 111782. [64] K.S. Sharma, A.K. Rakshit, Investigation of the properties of decaoxyethylene n -dodecyl ether, C12E10, in the aqueous sugar-rich region, J. Surfact. Deterg. 7(2004) 305-316. [65] Z.H. Ren, Effect of sodium chloride on interaction between amino sulfonate amphoteric surfactant and octylphenol polyoxyethylene ether (10) in aqueous solution, J. Ind. Eng. Chem. 30(2015) 44-49. [66] Z.H. Ren, J. Huang, Y. Luo, Y.C. Zheng, P. Mei, L. Lai, Y.L. Chang, Micellization behavior of binary mixtures of amino sulfonate amphoteric surfactant with different octylphenol polyoxyethylene ethers in aqueous salt solution:both cationic and hydrophilic effects, J. Ind. Eng. Chem. 36(2016) 263-270. [67] B. Kumar, D. Tikariha, K.K. Ghosh, P. Quagliotto, Effect of short chain length alcohols on micellization behavior of cationic gemini and monomeric surfactants, J. Mol. Liq. 172(2012) 81-87. |