[1] Y. Liu, L.Y. Zhao, J.J. Lin, S.K. Yang, Electrodeposited surfaces with reversibly switching interfacial properties, Sci. Adv. 5(11) (2019) eaax0380. [2] Z.J. Gong, J.L. Wang, L.M. Wu, X.Y. Wang, G.C. Lv, L.B. Liao, Fabrication of super hydrophobic surfaces on copper by solution-immersion, Chin. J. Chem. Eng. 21(8) (2013) 920-926. [3] Z.W. Han, X.M. Feng, Z.G. Guo, S.C. Niu, L.Q. Ren, Flourishing bioinspired antifogging materials with superwettability:progresses and challenges, Adv. Mater. 30(13) (2018) e1704652. [4] N. Verplanck, E. Galopin, J.C. Camart, V. Thomy, Y. Coffinier, R. Boukherroub, Reversible electrowetting on superhydrophobic silicon nanowires, Nano Lett. 7(3) (2007) 813-817. [5] D.J. Gao, J. Cao, Z.G. Guo, Underwater manipulation of oil droplets and bubbles on superhydrophobic surfaces via switchable adhesion, Chem. Commun. 55(23) (2019) 3394-3397. [6] H.S. Lim, J.T. Han, D. Kwak, M.H. Jin, K. Cho, Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern, J. Am. Chem. Soc. 128(45) (2006) 14458-14459. [7] M.J. Cheng, Q. Liu, G.N. Ju, Y.J. Zhang, L. Jiang, F. Shi, Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface, Adv. Mater. 26(2) (2014) 306-310. [8] X. Zhang, B. Ding, Y.F. Bian, D. Jiang, I.P. Parkin, Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state:experimental evidence and theoretical insight, Nanotechnology 29(48) (2018) 485601. [9] E.B. Caldona, J.M.C. Albayalde, A.M.P. Aglosolos, K.S. Bautista, M.D. Tavora, S.A. P. Cabalza, J.R.O. Diaz, M.D. Mulato, Titania-containing recycled polypropylene surfaces with photo-induced reversible switching wettability, J. Polym. Environ. 27(7) (2019) 1564-1571. [10] H.W. Meng, T. Yan, J.G. Yu, F.P. Jiao, Super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane sponge applied for oil/water separation, Chin. J. Chem. Eng. 26(5) (2018) 957-963. [11] T. Zhang, Z.D. Li, Y.F. Lü, Y. Liu, D.Y. Yang, Q.R. Li, F.X. Qiu, Recent progress and future prospects of oil-absorbing materials, Chin. J. Chem. Eng. 27(6) (2019) 1282-1295. [12] S.K. Sethi, G. Manik, Recent progress in super hydrophobic/hydrophilic selfcleaning surfaces for various industrial applications:a review, Polym.-Plast. Technol. Eng. 57(18) (2018) 1932-1952. [13] B. Majhy, R. Iqbal, A.K. Sen, Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic-superhydrophilic surface, Sci. Rep. 8(1) (2018) 18018. [14] S. Pradheebha, R. Unnikannan, R.N. Bathe, G. Padmanabham, R. Subasri, Effect of plasma pretreatment on durability of sol-gel superhydrophobic coatings on laser modified stainless steel substrates, J. Adhes. Sci. Technol. 32(21) (2018) 2394-2404. [15] F.C. Walsh, Modern developments in electrodes for electrochemical technology and the role of surface finishing, Trans. IMF 97(1) (2019) 28-42. [16] Q. Liu, D.X. Chen, Z.X. Kang, One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy, ACS Appl. Mater. Interf. 7(3) (2015) 1859-1867. [17] B. Wang, Y. Xie, T.P. Yang, L.N. Wang, L.C. Wang, D.L. Jin, Synthesis and photocatalytic properties of flexible Cu2O thin film, Surf. Eng. 36(2) (2019) 199-205. [18] S. AlYahya, B.J. Rani, G. Ravi, R. Yuvakkumar, A. Arun, F. Ameen, S. AlNadhary, Size dependent magnetic and antibacterial properties of solvothermally synthesized cuprous oxide (Cu2O) nanocubes, J. Mater. Sci. Mater. Electron. 29(20) (2018) 17622-17629. [19] D.X. Chen, Z.X. Kang, ABS plastic metallization through UV covalent grafting and layer-by-layer deposition, Surf. Coat. Technol. 328(2017) 63-69. [20] F.M. Chang, S.L. Cheng, S.J. Hong, Y.J. Sheng, H.K. Tsao, Superhydrophilicity to superhydrophobicity transition of CuO nanowire films, Appl. Phys. Lett. 96(11) (2010) 114101. [21] D.X. Chen, Z.X. Kang, H. Hirahara, S. Aisawa, W. Li, Adsorption behaviors of deposition-targeted metallic ions onto thiol-containing silane modified liquid crystal polymer surfaces, Appl. Surf. Sci. 479(2019) 368-374. [22] D.X. Chen, Z.X. Kang, T. Bessho, Molecular grafting to improve adhesion of spray-deposited circuits on polymeric surface for flexible electronics, J. Ind. Eng. Chem. 52(2017) 73-81. [23] D.X. Chen, Y. Zhang, T. Bessho, T. Kudo, J. Sang, H. Hirahara, K. Mori, Z.X. Kang, Ag films with enhanced adhesion fabricated by solution process for solar reflector applications, Sol. Energy Mater. Sol. Cells 151(2016) 154-161. [24] T.T. Zhao, Z.X. Kang, Simultaneously fabricating multifunctional superhydrophobic/superoleophilic coatings by one-step electrodeposition method on cathodic and anodic magnesium surfaces, J. Electrochem. Soc. 163(10) (2016) D628-D635. [25] K. Nagase, Y. Zheng, Y. Kodama, J. Kakuta, Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O, J. Catal. 187(1) (1999) 123-130. [26] H. Gao, J.Y. Zhang, M. Li, K.J. Liu, D. Guo, Y. Zhang, Evaluating the electric property of different crystal faces and enhancing the Raman scattering of Cu2O microcrystal by depositing Ag on the surface, Curr. Appl. Phys. 13(5) (2013) 935-939. [27] K.L. Chavez, D.W. Hess, A novel method of etching copper oxide using acetic acid, J. Electrochem. Soc. 148(11) (2001) G640-G643. [28] Z.H. Zhang, H.J. Wang, Y.H. Liang, X.J. Li, L.Q. Ren, Z.Q. Cui, C. Luo, One-step fabrication of robust superhydrophobic and superoleophilic surfaces with selfcleaning and oil/water separation function, Sci. Rep. 8(1) (2018) 3869. [29] L. Niu, Z.X. Kang, A facile approach for the fabrication of 3D flower-like Cu2S nanostructures on brass mesh with temperature-induced wetting transition for efficient oil-water separation, Appl. Surf. Sci. 422(2017) 456-468. [30] D.X. Chen, Z.X. Kang, W. Li, One-step electrodeposition to fabricate superhydrophobic coating and its reversible wettability transformation, Mater. Res. Express 7(1) (2019) 016404. |