[1] D. Pavlov, Lead-Acid Batteries: Science and Technology, Elsevier, New York, 2011. [2] H.A. Kiehne, Battery Technology Handbook, CRC Press, Boca Raton, FL, USA, 2003. [3] J. Jung, L. Zhang, J. Zhang, Lead -Acid Battery Technologies: Fundamentals, Materials, and Applications, Taylor and France Group, 2015. [4] S. Nahidi, I. Jafari Gavzan, S. Saedodin, M. Salari, Influence of surfactant additives on the electrolyte flow velocity and insoluble gas bubbles behavior within a lead-acid battery, J. Electrochem. Soc. 167(12) (2020) 120524. [5] H. Pourmirzaagha, V. Esfahanian, F. Sabetghadam, Torabi Single and multiobjective optimization for the performance enhancement of lead-acid battery cell, Int. J. Energy Res. 40(2016) 1966-1978. [6] A. Paglietti, Electrolyte additive concentration for maximum energy storage in lead-acid batteries, Batteries 2(2016) 36. [7] J. Furukawa, Y. Nehyo, S. Shiga, Development of new positive-grid alloy and its application to long-life batteries for automotive industry, J. Power Sources 133(2004) 25-31. [8] D. Nakhaie, P.H. Benhangi, A. Alfantazi, A. Davoodi, The effect of grid configurations on potential and current density distributions in positive plate of lead-acid battery via numerical modeling, Electrochim. Acta 115(2014) 189-196. [9] J. Yamashita, Y. Matsumaru, Studies on the microstructure of the positive leadacid battery plate and its electrochemical reactivity, J. Appl. Electrochem. 18(4) (1988) 595-600. [10] D. Pavlov, E. Bashtavelova, Structural properties of the pbo2 active mass determining its capacity and the “breathing” of the positive plate during cycling, J. Electrochem. Soc. 133(1986) 241. [11] D. Pavlov, S. Ignatova, Breathing of the lead-acid battery negative plate during cycling, J. Appl. Electrochem. 17(1987) 715-723. [12] D. Nakhaie, I. Taji, M.H. Moayed, E. Asselin, Dependence of the electrochemical and passive behavior of the lead-acid battery positive grid on electrode surface roughness, Corros. Sci. 73(11) (2017) 1359-1366. [13] J. Kabzinski, H.B. Meiwes, C. Rahe, D.U. Sauer, method for optical analysis of surface structures of lead-acid battery electrodes using a confocal laser scanning microscope, J. Electrochem. Soc. 163(6) (2016) A995-A1000. [14] A. Taqieddin, R. Nazari, L. Rajic, A. Alshawabkeh, Review—physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems, J. Electrochem. Soc. 164(13) (2017) E448-E459. [15] M. Hisayoshi, I. Takami, F. Yasuhiro, Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field, J. Solid State Electrochem. 16(2) (2012) 617-623. [16] T. Weier, S. Landgraf, The two-phase flow at gas-evolving electrodes: Bubbledriven and Lorentz-force-driven convection, Euro. Phys. J. Special Top. 220(2013) 313-322. [17] D.M.F. Santos, C.A.C. Sequeira, J.L. Figueiredo, Hydrogen production by alkaline water electrolysis, Quim. Nova 36(8) (2013) 1176-1193. [18] F. Alavyoon, A. Eklund, F.H. Ark, R.I. Karlsson, D. Simonsson, Theoretical and experimental studies of free convection and stratification of electrolyte in a lead-acid cell during recharge, Electrochem. Acta 36(1991) 2153-2164. [19] V. Esfahanian, F. Torabi, Numerical simulation of acid stratification in lead-acid batteries, In: International Conference on lead acid batteries (LABAT), Bulgaria, 2008. [20] W.B. Gu, C.Y. Wang, B.Y. Liaw, Numerical modeling of coupled electrochemical and transport processes in lead-acid batteries, J. Electrochem. Soc. 144(1997) 2053-2061. [21] A. Eklund, R.I. Karlsson, Free convection and stratification of electrolyte in the lead-acid cell without/ With a separator during cycling, Elecmchim. Acta 37(1992) 681-694. [22] D. Sarker, W. Ding, R. Franz, O. Varlamova, P. Kovats, K. Zahringer, U. Hampel, Investigations on the effects of heater surface characteristics on the bubble waiting period during nucleate boiling at low subcooling, Exp. Therm Fluid Sci. 101(2019) 76-86. [23] D. Sarker, R. Franz, W. Ding, U. Hampel, Single bubble dynamics during subcooled nucleate boiling on a vertical heater surface: An experimental analysis of the effects of surface characteristics, Int. J. Heat Mass Transf. 109(2017) 907-921. [24] R.L. Mohanty, M.K. Das, A critical review on bubble dynamics parameters influencing boiling heat transfer, Renew. Sustain. Energy Rev. 78(2017) 466-494. [25] U. Ullum, P. S. Larsen, Imaging techniques for planar velocity and concentration measurements, Technical University of Denmark. ET-PHD, No. 99-03, 1999. [26] M. Raffel, C.E. Willert, F. Scarano, C.J. Kähler, S.T. Wereley, J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Springer, Heidelberg, Berlin, 2018. [27] I. Kuroda, A. Sakakibara, T. Sasaki, Y. Murai, N. Nagai, F. Yamamoto, PIV study on buoyant bubble flows in a small electrolytic cell, Japanese J. Multiphase Flow 22(2) (2008) 161-174. [28] S. Nahidi, I. Jafari Gavzan, S. Saedodin, M. Salari, Measurement of the electrolyte flow velocity and bubbles characterization during electrochemical reactions in lead-acid batteries using the PIV system, J. Ind. Eng. Chem. 87(2020) 46-53. [29] L. Parkinson, R. Sedev, D. Fornasiero, J. Ralston, The terminal rise velocity of 10-100 lm diameter bubbles in water, J. Colloid Interface Sci. 322(2008) 168-172. |