[1] P. Sudarsanam, R. Zhong, S. Van den Bosch, S.M. Coman, V.I. Parvulescu, B.F. Sels, Functionalised heterogeneous catalysts for sustainable biomass valorization, Chem. Soc. Rev. 47(2018) 8349-8402. [2] G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 308(2015) 1446. [3] J. Cueto, L. Faba, E. Dláz, S. Ordòñez, Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation, Appl. Catal. B: Environ. 201(2017) 221-231. [4] E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba, M. Hara, Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, J. Am. Chem. Soc. 141(2019) 890-900. [5] A.H. Motagamwala, W. Won, C. Sener, D.M. Alonso, C.T. Maravelias, J.A. Dumesic, Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose, Sci. Adv. 4(2018) 9722. [6] J. Tan, J. Cui, Y. Zhu, X. Cui, Y. Shi, W. Yan, Y. Zhao, Complete aqueous hydrogenation of 5-hydroxymethylfurfural at room temperature over bimetallic RuPd/graphene catalyst, ACS Sustain. Chem. Eng. 7(2019) 10670-10678. [7] X. Li, Q. Deng, L. Zhang, J. Wang, R. Wang, Z. Zeng, S. Deng, Highly efficient hydrogenative ring-rearrangement of furanic aldehydes to cyclopentanone compounds catalyzed by noble metals/MIL-MOFs, Appl. Catal. A Gen. 575(2019) 152-158. [8] Q. Deng, G. Nie, L. Pan, J.-J. Zou, X. Zhang, L. Wang, Highly selective selfcondensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel, Green Chem. 17(2015) 4473-4481. [9] J. Tuteja, H. Choudhary, S. Nishimura, K. Ebitani, Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source, ChemsusChem 7(2014) 96-100. [10] T. Cai, Q. Deng, H. Peng, J. Zhong, R. Gao, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Synthesis of renewable C-C cyclic compounds and high-density biofuels using 5-hydromethylfurfural as a reactant, Green Chem. 22(2020) 2468-2473. [11] J. Artz, S. Mallmann, R. Palkovits, Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts, ChemsusChem 8(2015) 672-679. [12] X. Li, Q. Deng, S. Zhou, J.-J. Zou, J. Wang, R. Wang, Z. Zeng, S. Deng, Doublemetal cyanide-supported Pd catalysts for highly efficient hydrogenative ringrearrangement of biomass-derived furanic aldehydes to cyclopentanone compounds, J. Catal. 378(2019) 201-208. [13] Q. Deng, R. Gao, X. Li, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Hydrogenative ringrearrangement of biobased furanic aldehydes to cyclopentanone compounds over Pd/pyrochlore by introducing oxygen vacancies, ACS Catal. 10(2020) 7355-7366. [14] H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316(2007) 1597-1600. [15] C. Sievers, I. Musin, T. Marzialetti, M.B. Valenzuela Olarte, P.K. Agrawal, C.W. Jones, Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase, ChemSusChem 2(2006) 665-671. [16] J.S. Kruger, V. Choudhary, V. Nikolakis, D.G. Vlachos, Elucidating the roles of zeolite H-BEA in aqueous-phase fructose dehydration and HMF rehydration, ACS Catal. 3(2013) 1279-1291. [17] A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides, Chem. Commun. 41(2009) 6276-6278. [18] X. Zhang, D. Zhang, Z. Sun, L. Xue, X. Wang, Z. Jiang, Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction, Appl. Catal. B: Environ. 196(2016) 50-56. [19] A.H. Jadhav, H. Kim, I.T. Hwang, An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water, Bioresour. Technol. 132(2013) 342-350. [20] I. Jiménez-Morales, A. Teckchandani-Ortiz, T.J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate, Appl. Catal. B: Environ. 144(2014) 22-28. [21] V.V. Ordomsky, V.L. Sushkevich, J.C. Schouten, J. Van der Schaaf, Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts, J. Catal. 300(2013) 37-46. [22] X. Qi, M.T.M. Aida, R.L. Smith Jr., Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids, Green Chem. 11(2009) 1327-1331. [23] H.A. Hafizi, N. Chermahini, M. Saraji, G. Mohammadnezhad, The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an ordered mesoporous silica, Chem. Eng. J. 294(2016) 380-388. [24] A.J. Crisci, M.H. Tucker, M.-Y. Lee, S.G. Jang, J.A. Dumesic, S.L. Scott, Acid functionalized SBA-15-type silica catalysts for carbohydrate dehydration, ACS Catal. 1(2011) 719-728. [25] M.H. Tucker, A.J. Crisci, B.N. Wigington, N. Phadke, R. Alamillo, J. Zhang, S.L. Scott, J.A. Dumesic, Acid-functionalized SBA-15-type periodic mesoporous organosilicas and their use in the continuous production of 5-hydroxymethylfurfural, ACS Catal. 2(2012) 1865-1876. [26] B. Karimi, H.M. Mirzaei, A. Mobaraki, Periodic mesoporous organosilica functionalized sulfonic acids as highly efficient and recyclable catalysts in biodiesel production, Catal. Sci. Technol. 2(2012) 828-834. [27] R. Liu, J. Chen, X. Huang, L. Chen, L. Ma, X. Li, Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acidfunctionalized carbon materials, Green Chem. 15(2013) 2895-2903. [28] X. Li, H. Guo, L. Li, R.L. Smith Jr., Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon, ChemSusChem 5(2012) 2215-2220. [29] F.H. Richte, K. Pupovac, R. Palkovits, F. Schüth, Set of acidic resin catalysts to correlate structure and reactivity in fructose conversion to 5-hydroxymethylfurfural, ACS Catal. 3(2013) 123-127. [30] J. Chen, K. Li, L. Chen, R. Liu, X. Huang, D. Ye, Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal-organic frameworks, Green Chem. 16(2014) 2490-2499. [31] G. Morales, G. Athens, B.F. Chmelka, R. van Grieken, J.A. Melero, Aqueoussensitive reaction sites in sulfonic acidfunctionalized mesoporous silicas, J. Catal. 254(2008) 205-217. [32] K.A. Da Silva Rocha, J.L. Hoehne, E.V. Gusevskaya, Phosphotungstic acid as a versatile catalyst for the synthesis of fragrance compounds by a-pinene oxide isomerization: solvent induced chemoselectivity, Chem.-Eur. J. 14(2008) 6166-6172. [33] X. Li, Q. Deng, L. Yu, R. Gao, Z. Tong, C. Lu, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Double-metal cyanide as an acid and hydrogenation catalyst for the highly selective ring-rearrangement of biomass-derived furfuryl alcohol to cyclopentenone compounds, Green Chem. 22(2020) 2549-2557. [34] L. Wang, H. Wang, F. Liu, A. Zheng, J. Zhang, Q. Sun, J.P. Lewis, L. Zhu, X. Meng, F.S. Xiao, Selective catalytic production of 5-hydroxymethylfurfural from glucose by adjusting catalyst wettability, ChemSusChem 7(2014) 402-406. [35] Z. Yang, W. Qi, R. Huang, J. Fang, R. Su, Z. He, Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural, Chem. Eng. J. 296(2016) 209-216. [36] D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, Ł.J. Weselin ′ski, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.-H. Emwas, M. Eddaoudi, MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 Storage, J. Am. Chem. Soc. 137(2015) 13308-13318. [37] F. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T.-L. Hu, M. O’Keeffe, L. Wang, M. Luo, R.-B. Lin, B. Chen, UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation, J. Am. Chem. Soc. 138(2016) 5678-5684. [38] V. Stavila, R. Parthasarathi, R.W. Davis, F.E. Gabaly, K.L. Sale, B.A. Simmons, S. Singh, M.D. Allendorf, MOF-based catalysts for selective hydrogenolysis of carbon-oxygen ether bonds, ACS Catal. 6(2016) 55-59. [39] G.-W. Xu, Y.-P. Wu, W.-W. Dong, J. Zhao, X.-Q. Wu, D.-S. Li, Q. Zhang, A multifunctional Tb-MOF for highly discriminative sensing of Eu3+/Dy3+ and as a catalyst support of Ag nanoparticles, Small 13(2017) 1602996. [40] M.-X. Wu, Y.-W. Yang, Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater. 29(2017) 1606134. [41] N.T.T. Nguyen, H. Furukawa, F. Gándara, C.A. Trickett, H.M. Jeong, K.E. Cordova, O.M. Yaghi, Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity, J. Am. Chem. Soc. 137(2015) 15394-15397. [42] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309(2005) 2040-2042. [43] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130(2008) 13850-13851. [44] B. Li, K. Leng, Y. Zhang, J.J. Dynes, J. Wang, Y. Hu, D. Ma, Z. Shi, L. Zhu, D. Zhang, Y. Sun, M. Chrzanowski, S. Ma, Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions, J. Am. Chem. Soc. 137(2015) 4243-4248. [45] J.M. Taylor, T. Komatsu, S. Dekura, K. Otsubo, M. Takata, H. Kitagawa, The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework, J. Am. Chem. Soc. 137(2015) 11498-11506. [46] Y. Su, G. Chang, Z. Zhang, H. Xing, B. Su, Q. Yang, Q. Ren, Y. Yang, Z. Bao, Catalytic dehydration of glucose to 5-hydroxymethylfurfural with a bifunctional metal-organic framework, AIChE J. 62(2016) 4403-4417. [47] H. Li, Q. Deng, H. Chen, X. Cao, J. Zheng, Y. Zhong, P. Zhang, J. Wang, Z. Zeng, S. Deng, Benzenesulfonic acid functionalized hydrophobic mesoporous biochar as an efficient catalyst for the production of biofuel, Appl. Catal. A Gen. 580(2019) 178-185. [48] P. Sujatha Devi, Citrate gel processing of the perovskite lanthanide chromites, J. Mater. Chem. 3(1993) 373-379. [49] X.B. Luo, C.C. Wang, L.C. Wang, F. Deng, S.L. Luo, X.M. Tu, C.T. Au, Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water, Chem. Eng. J. 220(2013) 98-106. [50] K. Dong, J. Zhang, W. Luo, L. Su, Z. Huang, Catalytic conversion of carbohydrates into 5-hydroxymethyl furfural over sulfonated hyper-cross-linked polymer in DMSO, Chem. Eng. J. 334(2018) 1055-1064. [51] Y. Zhong, Q. Deng, Q. Yao, C. Lu, P. Zhang, H. Li, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Functionalized biochar with superacidity and hydrophobicity as a highly efficient catalyst in the synthesis of renewable high-density fuels, ACS Sustain. Chem. Eng. 8(2020) 7785-7794. [52] Y. Zhong, P. Zhang, X. Zhu, H. Li, Q. Deng, J. Wang, Z. Zeng, J.-J. Zou, S. Deng, Highly efficient alkylation using hydrophobic sulfonic acid-functionalized biochar as a catalyst for synthesis of high-density biofuels, ACS Sustain. Chem. Eng. 7(2019) 14973-14981. [53] Y. Zhong, Q. Deng, P. Zhang, J. Wang, R. Wang, Z. Zeng, S. Deng, Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties, Fuel 240(2019) 270-277. |