中国化学工程学报 ›› 2021, Vol. 35 ›› Issue (7): 220-230.DOI: 10.1016/j.cjche.2021.05.013
• Catalysis, Kinetics and Reaction Engineering • 上一篇 下一篇
Qingpeng Cheng1,2, Yunhao Liu1, Shuaishuai Lyu1, Ye Tian1, Qingxiang Ma3, Xingang Li1,4
收稿日期:
2020-12-28
修回日期:
2021-04-29
出版日期:
2021-07-28
发布日期:
2021-09-30
通讯作者:
Xingang Li
基金资助:
Qingpeng Cheng1,2, Yunhao Liu1, Shuaishuai Lyu1, Ye Tian1, Qingxiang Ma3, Xingang Li1,4
Received:
2020-12-28
Revised:
2021-04-29
Online:
2021-07-28
Published:
2021-09-30
Contact:
Xingang Li
Supported by:
摘要: For supported metal catalyst systems, the impact on catalysis originates from the interaction between metal nanoparticles and their support. Metal-support interactions (MSI) can change electronic properties, geometric morphologies, or chemical compositions of metal nanoparticles to make active sites have specific properties and catalytic activities. Fischer-Tropsch synthesis (FTS) is one of the most effective ways to convert cheap non-petroleum-based carbon sources into high value-added chemicals or ultra-clean liquid fuels. In this review, we summarize and classify the impact of MSI on the catalytic activity, selectivity and stability of FTS catalysts. The strategies to tune MSI are introduced in detail, and the recent development of high-efficiency FTS catalysts through the manipulation of SMI strategies has been highlighted. It is emphasized that the active metal sites, which are endowed with special functions by MSI, can change the strength of adsorption bond of adsorbates, consequently controlling the product distribution.
Qingpeng Cheng, Yunhao Liu, Shuaishuai Lyu, Ye Tian, Qingxiang Ma, Xingang Li. Manipulating metal-support interactions of metal catalysts for Fischer-Tropsch synthesis[J]. 中国化学工程学报, 2021, 35(7): 220-230.
Qingpeng Cheng, Yunhao Liu, Shuaishuai Lyu, Ye Tian, Qingxiang Ma, Xingang Li. Manipulating metal-support interactions of metal catalysts for Fischer-Tropsch synthesis[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 220-230.
[1] F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Selective conversion of syngas to light olefins, Science 351(2016) 1065. [2] L. Zhong, F. Yu, Y. An, Y. Zhao, Y. Sun, Z. Li, T. Lin, Y. Lin, X. Qi, Y. Dai, L. Gu, J. Hu, S. Jin, Q. Shen, H. Wang, Cobalt carbide nanoprisms for direct production of lower olefins from syngas, Nature 538(2016) 84-87. [3] J. Li, Y. He, L. Tan, P. Zhang, X. Peng, A. Oruganti, G. Yang, H. Abe, Y. Wang, N. Tsubaki, Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology, Nat. Catal. 1(2018) 787-793. [4] J. Kang, S. He, W. Zhou, Z. Shen, Y. Li, M. Chen, Q. Zhang, Y. Wang, Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis, Nat. Commun. 11(2020) 827. [5] Q. Zhang, W. Deng, Y. Wang, Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis, J. Energy. Chem. 22(2013) 27-38. [6] Q. Zhang, J. Kang, Y. Wang, Development of novel catalysts for FischerTropsch synthesis:tuning the product selectivity, ChemCatChem 2(2010) 1030-1058. [7] J. Bao, G. Yang, Y. Yoneyama, N. Tsubaki, Significant advances in C1 catalysis:highly efficient catalysts and catalytic reactions, ACS Catal. 9(2019) 3026-3053. [8] W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, New horizon in C1 chemistry:breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels, Chem. Soc. Rev. 48(2019) 3193-3228. [9] R. Friedel, R. Anderson, Composition of synthetic liquid fuels. I. product distribution and analysis of C5-C8 paraffin isomers from cobalt catalyst, J. Am. Chem. Soc. 72(1950) 1212-1215. [10] J. Bao, J. He, Y. Zhang, Y. Yoneyama, N. Tsubaki, A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction, Angew. Chem. Int. Ed. 120(2008) 359-362. [11] J. Kang, S. Zhang, Q. Zhang, Y. Wang, Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel, Angew. Chem. Int. Ed. 48(2009) 2565-2568. [12] X. Peng, K. Cheng, J. Kang, B. Gu, X. Yu, Q. Zhang, Y. Wang, Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis:diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles, Angew. Chem. Int. Ed. 54(2015) 4553-4556. [13] J. Kang, K. Cheng, L. Zhang, Q. Zhang, J. Ding, W. Hua, Y. Lou, Q. Zhai, Y. Wang, Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins, Angew. Chem. Int. Ed. 50(2011) 5200-5203. [14] C. Qin, B. Hou, J. Wang, G. Wang, Z. Ma, L. Jia, D. Li, Stabilizing optimal crystalline facet of cobalt catalysts for Fischer-Tropsch synthesis, ACS Appl. Mater. Interfaces 11(2019) 33886-33893. [15] C.J. Pan, M.C. Tsai, W.N. Su, J. Rick, N.G. Akalework, A.K. Agegnehu, S.Y. Cheng, B.J. Hwang, Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis, J. Taiwan Inst. Chem. Eng. 74(2017) 154-186. [16] S. Penner, M. Armbrüster, Formation of intermetallic compounds by reactive metal-support interaction:a frequently encountered phenomenon in catalysis, ChemCatChem 7(2015) 374-392. [17] T.W. van Deelen, C.H. Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity, Nat. Catal. 2(2019) 955-970. [18] D. Resasco, G. Haller, A model of metal-oxide support interaction for Rh on TiO2, J. Catal. 82(1983) 279-288. [19] J. Dong, Q. Fu, Z. Jiang, B. Mei, X. Bao, Carbide-supported Au catalysts for water-gas shift reactions:a new territory for the strong metal-support interaction effect, J. Am. Chem. Soc. 140(2018) 13808-13816. [20] Q.Q. Yan, D.X. Wu, S.Q. Chu, Z.Q. Chen, Y. Lin, M.X. Chen, J. Zhang, X.J. Wu, H. W. Liang, Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution, Nat. Commun. 10(2019) 4977. [21] A. Karimi, B. Nasernejad, A.M. Rashidi, Synthesis and characterization of multiwall carbon nanotubes/alumina nanohybrid-supported cobalt catalyst in Fischer-Tropsch synthesis, J. Energy Chem. 22(2013) 582-590. [22] M. Javed, S. Cheng, G. Zhang, P. Dai, Y. Cao, C. Lu, R. Yang, C. Xing, S. Shan, Complete encapsulation of zeolite supported Co based core with silicalite-1 shell to achieve high gasoline selectivity in Fischer-Tropsch synthesis, Fuel 215(2018) 226-231. [23] K. Okabe, I. Takahara, M. Inaba, K. Murata, Y. Yoshimura, Effects of Ru precursors on activity of Ru-SiO2 catalysts prepared by alkoxide method in Fischer-Tropsch synthesis, J. Jap. Petrol. Inst. 50(2007) 65-68. [24] J.J. Herbert, P. Senecal, D.J. Martin, W. Bras, S.K. Beaumont, A.M. Beale, X-ray spectroscopic and scattering methods applied to the characterisation of cobalt-based Fischer-Tropsch synthesis catalysts, Catal. Sci. Technol. 6(2016) 5773-5791. [25] J. Den Breejen, P. Radstake, G. Bezemer, J. Bitter, V. Frøseth, A. Holmen, K.d. de Jong, On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis, J. Am. Chem. Soc., 131(2009) 7197-7203. [26] C.H. Bartholomew, R.B. Pannell, J.L. Butler, D.G. Mustard, Nickel-support interactions:their effects on particle morphology, adsorption, and activity selectivity properties, Ind. Eng. Chem. Prod. Res. Dev. 20(1981) 296-300. [27] P. Meriaudeau, O. Ellestad, M. Dufaux, C. Naccache, Metal-support interaction. Catalytic properties of TiO2-supported platinum, iridium, and rhodium, J. Catal. 75(1982) 243-250. [28] S. Labich, E. Taglauer, H. Knözinger, Metal-support interactions on rhodium model catalysts, Top. Catal. 14(2000) 153-161. [29] H. Wang, W. Zhou, J.-X. Liu, R. Si, G. Sun, M.-Q. Zhong, H.-Y. Su, H.-B. Zhao, J.A. Rodriguez, S.J. Pennycook, Platinum-modulated cobalt nanocatalysts for lowtemperature aqueous-phase Fischer-Tropsch synthesis, J. Am. Chem. Soc. 135(2013) 4149-4158. [30] A. Dinse, M. Aigner, M. Ulbrich, G.R. Johnson, A.T. Bell, Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis, J. Catal. 288(2012) 104-114. [31] E. Rytter, A. Holmen, On the support in cobalt Fischer-Tropsch synthesis-Emphasis on alumina and aluminates, Catal. Today 275(2016) 11-19. [32] J. Yang, X. Fang, Y. Xu, X. Liu, Investigation of the deactivation behavior of Co catalysts in Fischer-Tropsch synthesis using encapsulated Co nanoparticles with controlled SiO2 shell layer thickness, Catal. Sci. Technol. 10(2020) 1182-1192. [33] X. Li, Y. Chen, M.U. Nisa, Z. Li, Combating poison with poison-irreducible Co2SiO4 as a promoter to modify Co-based catalysts in Fischer-Tropsch synthesis, Appl. Catal. B 267(2020) 118377. [34] Y. Liu, L. Jia, B. Hou, D. Sun, D. Li, Cobalt aluminate-modified alumina as a carrier for cobalt in Fischer-Tropsch synthesis, Appl. Catal. A 530(2017) 30-36. [35] H. Fang, J. Yang, M. Wen, Q. Wu, Nanoalloy materials for chemical catalysis, Adv. Mater. 30(2018) 1705698. [36] J. Amelse, L. Schwartz, J. Butt, Iron alloy Fischer-Tropsch catalysts:III. conversion dependence of selectivity and water-gas shift, J. Catal. 72(1981) 95-110. [37] E. Unmuth, L. Schwartz, J. Butt, Iron alloy Fischer-Tropsch catalysts:I. oxidation-reduction studies of the Fe-Ni system, J. Catal. 61(1980) 242-255. [38] K. Arcuri, L. Schwartz, R. Piotrowski, J. Butt, Iron alloy Fischer-Tropsch catalysts:IV. reaction and selectivity studies of the FeCo system, J. Catal. 85(1984) 349-361. [39] C.H. Mejía, J.E. van der Hoeven, P.E. de Jongh, K.P. de Jong, Cobalt-Nickel nanoparticles supported on reducible oxides as Fischer-Tropsch catalysts, ACS Catal. 10(2020) 7343-7354. [40] Y. Zhai, Y. Xue, Z. Chen, M. Chen, B. Wang, J. Chen, Study on Fe-Co alloy role over RANEY Fe-Co bimetallic catalysts in Fischer-Tropsch synthesis, RSC Adv. 6(2016) 101683-101687. [41] Y. Xue, H. Ge, Z. Chen, Y. Zhai, J. Zhang, J. Sun, M. Abbas, K. Lin, W. Zhao, J. Chen, Effect of strain on the performance of iron-based catalyst in FischerTropsch synthesis, J. Catal. 358(2018) 237-242. [42] M. Wen, D. Yang, Q.S. Wu, R.P. Lu, Y.Z. Zhu, F. Zhang, Inducing synthesis of amorphous EuFePt nanorods and their comprehensive enhancement of magnetism, thermostability and photocatalysis, Chem. Commun. 46(2010) 219-221. [43] D. Wang, Y. Li, Bimetallic nanocrystals:liquid-phase synthesis and catalytic applications, Adv. Mater. 23(2011) 1044-1060. [44] S. Tauster, S. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, J. Am. Chem. Soc. 100(1978) 170-175. [45] Y. Zhang, X. Su, L. Li, H. Qi, C. Yang, W. Liu, X. Pan, X. Liu, X. Yang, Y. Huang, T. Zhang, Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer-Tropsch synthesis, ACS Catal. 10(2020) 12967-12975. [46] J. Hong, B. Wang, G. Xiao, N. Wang, Y. Zhang, A.Y. Khodakov, J. Li, Tuning the metal-support interaction and enhancing the stability of titania-supported cobalt Fischer-Tropsch catalysts via carbon nitride coating, ACS Catal. 10(2020) 5554-5566. [47] J.H. Den Otter, H. Yoshida, C. Ledesma, D. Chen, K.P. de Jong, On the superior activity and selectivity of PtCo/Nb2O5 Fischer-Tropsch catalysts, J. Catal. 340(2016) 270-275. [48] G. Xiao, Y. Han, F. Jing, M. Chen, S. Chen, F. Zhao, S. Xiao, Y. Zhang, J. Lin, J. Hong, Preparation of highly dispersed Nb2O5 supported cobalt-based catalysts for the Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 59(2020) 17315-17327. [49] L. Spadaro, F. Arena, M.L. Granados, M. Ojeda, J.L.G. Fierro, F. Frusteri, Metalsupport interactions and reactivity of Co/CeO2 catalysts in the FischerTropsch synthesis reaction, J. Catal. 234(2005) 451-462. [50] M.K. Gnanamani, M.C. Ribeiro, W. Ma, W.D. Shafer, G. Jacobs, U.M. Graham, B. H. Davis, Fischer-Tropsch synthesis:Metal-support interfacial contact governs oxygenates selectivity over CeO2 supported Pt-Co catalysts, Appl. Catal. A 393(2011) 17-23. [51] H. Jahangiri, J. Bennett, P. Mahjoubi, K. Wilson, S. Gu, A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syngas, Catal. Sci. Technol. 4(2014) 2210-2229. [52] C.E. Kliewer, S.L. Soled, G. Kiss, Morphological transformations during Fischer-Tropsch synthesis on a titania-supported cobalt catalyst, Catal. Today 323(2019) 233-256. [53] Z.S. Jiang, Y.H. Zhao, C.F. Huang, Y.H. Song, D.P. Li, Z.T. Liu, Z.W. Liu, Metalsupport interactions regulated via carbon coating-a case study of Co/SiO2 for Fischer-Tropsch synthesis, Fuel 226(2018) 213-220. [54] C.H. Mejía, T.W. van Deelen, K.P. de Jong, Activity enhancement of cobalt catalysts by tuning metal-support interactions, Nat. Commun. 9(2018) 4459. [55] C. Okoye-Chine, C. Mbuya, T. Ntelane, M. Moyo, D. Hildebrandt, The effect of silanol groups on the metal-support interactions in silica-supported cobalt Fischer-Tropsch catalysts. A temperature programmed surface reaction, J. Catal. 381(2020) 121-129. [56] Y.H. Zhao, C. Liu, Y.H. Song, Q.J. Zhang, M.L. Zhu, Z.T. Liu, Z.W. Liu, Direct synthesis of the reduced Co-C/SiO2 as an efficient catalyst for Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 57(2018) 1137-1145. [57] Q.X. Luo, L.P. Guo, S.Y. Yao, J. Bao, Z.T. Liu, Z.W. Liu, Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis, J. Catal. 369(2019) 143-156. [58] T. Fu, Z. Li, Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis, Chem. Eng. Sci. 135(2015) 3-20. [59] G. Jacobs, T.K. Das, Y. Zhang, J. Li, G. Racoillet, B.H. Davis, Fischer-Tropsch synthesis:support, loading, and promoter effects on the reducibility of cobalt catalysts, Appl. Catal. B 233(2002) 263-281. [60] G.R. Jenness, J. Schmidt, Unraveling the role of metal-support interactions in heterogeneous catalysis:oxygenate selectivity in Fischer-Tropsch synthesis, ACS Catal. 3(2013) 2881-2890. [61] D. Wang, Z. Wang, G. Li, X. Li, B. Hou, SiO2-modified Al2O3@Al-supported cobalt for Fischer-Tropsch synthesis:improved catalytic performance and intensified heat transfer, Ind. Eng. Chem. Res. 57(2018) 12756-12765. [62] C. Liu, Y. He, L. Wei, Y. Zhao, Y. Zhang, F. Zhao, S. Lyu, S. Chen, J. Hong, J. Li, Effect of TiO2 surface engineering on the performance of cobalt-based catalysts for Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 58(2018) 1095-1104. [63] Y.Y. Guo, H. Bo, J.G. Wang, L.T. Jia, D.B. Li, Preparation of ZrO2 modified Al2O3 nano-sheets supported cobalt catalyst and its performance in Fischer-Tropsch synthesis, J. Fuel Chem. Technol. 47(2019) 540-548. [64] Ø. Borg, P.D. Dietzel, A.I. Spjelkavik, E.Z. Tveten, J.C. Walmsley, S. Diplas, S. Eri, A. Holmen, E. Rytter, Fischer-Tropsch synthesis:cobalt particle size and support effects on intrinsic activity and product distribution, J. Catal. 259(2008) 161-164. [65] C. Liu, J. Hong, Y. Zhang, Y. Zhao, L. Wang, L. Wei, S. Chen, G. Wang, J. Li, Synthesis of c-Al2O3 nanofibers stabilized Co3O4 nanoparticles as highly active and stable Fischer-Tropsch synthesis catalysts, Fuel 180(2016) 777-784. [66] X.P. Fu, Q.K. Shen, D. Shi, K. Wu, Z. Jin, X. Wang, R. Si, Q.S. Song, C.J. Jia, C.H. Yan, Co3O4-Al2O3 mesoporous hollow spheres as efficient catalyst for FischerTropsch synthesis, Appl. Catal. B 211(2017) 176-187. [67] S. Lyu, Q. Cheng, Y. Liu, Y. Tian, T. Ding, Z. Jiang, J. Zhang, F. Gao, L. Dong, J. Bao, Q. Ma, Q. Yang, X. Li, Dopamine sacrificial coating strategy driving formation of highly active surface-exposed Ru sites on Ru/TiO2 catalysts in FischerTropsch synthesis, Appl. Catal. B 278(2020) 119261. [68] D.S. Su, S. Perathoner, G. Centi, Nanocarbons for the development of advanced catalysts, Chem. Rev. 113(2013) 5782-5816. [69] W. Chen, Z. Fan, X. Pan, X. Bao, Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst, J. Am. Chem. Soc. 130(2008) 9414-9419. [70] R.M.M. Abbaslou, A. Tavassoli, J. Soltan, A.K. Dalai, Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis:Effect of catalytic site position, Appl. Catal. B 367(2009) 47-52. [71] S. Chernyak, A. Burtsev, A. Egorov, K. Maslakov, S. Savilov, V. Lunin, Stability of cobalt-based Fischer-Tropsch catalyst supported on oxidized carbon nanotubes, Funct. Mater. Lett. 13(2020) 2050021-2050369. [72] J. Xie, H.M. Torres Galvis, A.C. Koeken, A. Kirilin, A.I. Dugulan, M. Ruitenbeek, K.P. de Jong, Size and promoter effects on stability of carbon-nanofibersupported iron-based Fischer-Tropsch catalysts, ACS Catal. 6(2016) 4017-4024. [73] F. Jiang, B. Liu, W. Li, M. Zhang, Z. Li, X. Liu, Two-dimensional graphenedirected formation of cylindrical iron carbide nanocapsules for FischerTropsch synthesis, Catal. Sci. Technol. 7(2017) 4609-4621. [74] Y. Zhou, S. Natesakhawat, T.D. Nguyen-Phan, D.R. Kauffman, C.M. Marin, K. Kisslinger, R. Lin, H.L. Xin, E. Stavitski, K. Attenkofer, Highly active and stable carbon nanosheets supported iron oxide for Fischer-Tropsch to olefins synthesis, ChemCatChem 11(2019) 1625-1632. [75] T.N. Phaahlamohlaka, D.O. Kumi, M.W. Dlamini, L.L. Jewell, N.J. Coville, Ruthenium nanoparticles encapsulated inside porous hollow carbon spheres:A novel catalyst for Fischer-Tropsch synthesis, Catal. Today 275(2016) 76-83. [76] H. Xiong, M.A. Motchelaho, M. Moyo, L.L. Jewell, N.J. Coville, Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis, J. Catal. 278(2011) 26-40. [77] H. Xiong, M. Moyo, M.A. Motchelaho, Z.N. Tetana, S.M. Dube, L.L. Jewell, N.J. Coville, Fischer-Tropsch synthesis:Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches, J. Catal. 311(2014) 80-87. [78] Z. Sun, B. Sun, M. Qiao, J. Wei, Q. Yue, C. Wang, Y. Deng, S. Kaliaguine, D. Zhao, A general chelate-assisted co-assembly to metallic nanoparticlesincorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis, J. Am. Chem. Soc. 134(2012) 17653-17660. [79] K. Ha, G. Kwak, K.-W. Jun, J. Hwang, J. Lee, Ordered mesoporous carbon nanochannel reactors for high-performance Fischer-Tropsch synthesis, Chem. Commun. 49(2013) 5141-5143. [80] Y. Zhao, S. Huang, L. Wei, Y. Zhang, A. Lin, C. Liu, J. Li, Highly dispersed CoO on graphitic mesoporous carbon as an efficient catalyst for Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 59(2020) 3279-3286. [81] S. Taghavi, A. Tavasoli, A. Asghari, M. Signoretto, Loading and promoter effects on the performance of nitrogen functionalized graphene nanosheets supported cobalt Fischer-Tropsch synthesis catalysts, Int. J. Hydrog. Energy 44(2019) 10604-10615. [82] S. Chernyak, D. Stolbov, A. Ivanov, S. Klokov, T. Egorova, K. Maslakov, O. Eliseev, V. Maximov, S. Savilov, V. Lunin, Effect of type and localization of nitrogen in graphene nanoflake support on structure and catalytic performance of Co-based Fischer-Tropsch catalysts, Catal. Today 357(2019) 193-202. [83] Y. Wei, L. Yan, C. Ma, C. Zhang, S. Sun, X.D. Wen, Y. Yang, Y. Li, Mesoporous iron oxide nanoparticle-decorated graphene oxide catalysts for FischerTropsch synthesis, ACS Appl. Nano. Mater. 3(2020) 7182-7191. [84] J. Zhu, S. Mu, Defect engineering in the carbon-based electrocatalysts:insight into the intrinsic carbon defects, Adv. Funct. Mater. 30(2020) 2001097. [85] Z. Zhang, J. Zhang, X. Wang, R. Si, J. Xu, Y.-F. Han, Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins, J. Catal. 365(2018) 71-85. [86] Z. Tian, C. Wang, J. Yue, X. Zhang, L. Ma, Effect of a potassium promoter on the Fischer-Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon, Catal. Sci. Technol. 9(2019) 2728-2741. [87] C. Hu, L. Dai, Doping of carbon materials for metal-free electrocatalysis, Adv. Mater. 31(2019) 1804672. [88] Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, Y. Sun, The correlation of interfacial interaction and catalytic performance of N-doped mesoporous carbon supported cobalt nanoparticles for Fischer-Tropsch synthesis, J. Phys. Chem. C 118(2014) 268-277. [89] Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, Y. Sun, The effect of nitrogen on the autoreduction of cobalt nanoparticles supported on nitrogen-doped ordered mesoporous carbon for the Fischer-Tropsch synthesis, ChemCatChem 6(2014) 319-327. [90] W. Kiciński, B. Dembinska, M. Norek, B. Budner, M. Polański, P.J. Kulesza, S. Dyjak, Heterogeneous iron-containing carbon gels as catalysts for oxygen electroreduction:Multifunctional role of sulfur in the formation of efficient systems, Carbon 116(2017) 655-669. [91] X. Fan, G. Zhang, F. Zhang, Multiple roles of graphene in heterogeneous catalysis, Chem. Soc. Rev. 44(2015) 3023-3035. [92] W. Tian, H. Zhang, Z. Qian, T. Ouyang, H. Sun, J. Qin, M.O. Tadé, S. Wang, Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants, Appl. Catal. B 225(2018) 76-83. [93] J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes, ACS Catal. 5(2015) 5207-5234. [94] J. Lu, L. Yang, B. Xu, Q. Wu, D. Zhang, S. Yuan, Y. Zhai, X. Wang, Y. Fan, Z. Hu, Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins, ACS Catal. 4(2014) 613-621. [95] M. Davari, S. Karimi, A. Tavasoli, A. Karimi, Enhancement of activity, selectivity and stability of CNTs-supported cobalt catalyst in FischerTropsch via CNTs functionalization, Appl. Catal. B 485(2014) 133-142. [96] M.W. Dlamini, T.N. Phaahlamohlaka, D.O. Kumi, R. Forbes, L.L. Jewell, N.J. Coville, Post doped nitrogen-decorated hollow carbon spheres as a support for Co Fischer-Tropsch catalysts, Catal. Today 342(2020) 99-110. [97] T. Fu, R. Liu, J. Lv, Z. Li, Influence of acid treatment on N-doped multi-walled carbon nanotube supports for Fischer-Tropsch performance on cobalt catalyst, Fuel Process. Technol. 122(2014) 49-57. [98] M. Oschatz, J.P. Hofmann, T.W. van Deelen, W.S. Lamme, N.A. Krans, E.J. Hensen, K.P. de Jong, Effects of the functionalization of the ordered mesoporous carbon support surface on iron catalysts for the FischerTropsch synthesis of lower olefins, ChemCatChem 9(2017) 620-628. [99] O. Zhuo, L. Yang, F. Gao, B. Xu, Q. Wu, Y. Fan, Y. Zhang, Y. Jiang, R. Huang, X. Wang, Stabilizing the active phase of iron-based Fischer-Tropsch catalysts for lower olefins:mechanism and strategy, Chem. Sci. 10(2019) 6083-6090. [100] Q. Cheng, N. Zhao, S. Lyu, Y. Tian, F. Gao, L. Dong, Z. Jiang, J. Zhang, N. Tsubaki, X. Li, Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer-Tropsch synthesis, Appl. Catal. B 248(2019) 73-83. [101] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs):routes to various MOF topologies, morphologies, and composites, Chem. Rev. 112(2012) 933-969. [102] S. Kitagawa, Metal-organic frameworks (MOFs), Chem. Soc. Rev. 43(2014) 5415-5418. [103] K.E. Dekrafft, C. Wang, W. Lin, Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production, Adv. Mater. 24(2012) 2014-2018. [104] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc. 130(2008) 5390-5391. [105] V.P. Santos, T.A. Wezendonk, J.J.D. Jaén, A.I. Dugulan, M.A. Nasalevich, H.U. Islam, A. Chojecki, S. Sartipi, X. Sun, A.A. Hakeem, Metal organic frameworkmediated synthesis of highly active and stable Fischer-Tropsch catalysts, Nat. Commun. 6(2015) 6451. [106] X. Sun, A.I.O. Suarez, M. Meijerink, T. Van Deelen, S. Ould-Chikh, J. Zec ˇević, K. P. De Jong, F. Kapteijn, J. Gascon, Manufacture of highly loaded silicasupported cobalt Fischer-Tropsch catalysts from a metal organic framework, Nat. Commun. 8(2017) 1680. [107] H. Wang, B. Wu, Y. Cai, C. Zhou, N. Feng, G. Liu, C. Chen, H. Wan, L. Wang, G. Guan, Core-shell-structured Co-Z@TiO2 catalysts derived from ZIF-67 for efficient production of C5+ hydrocarbons in Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 58(2019) 7900-7908. [108] Z. Li, G. Luo, T. Chen, Z. Zeng, S. Guo, J. Lv, S. Huang, Y. Wang, X. Ma, Bimetallic CoCu catalyst derived from in-situ grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas, Fuel 278(2020) 118292. [109] B. Qiu, C. Yang, W. Guo, Y. Xu, Z. Liang, D. Ma, R. Zou, Highly dispersed Cobased Fischer-Tropsch synthesis catalysts from metal-organic frameworks, J. Mater. Chem. A 5(2017) 8081-8086. [110] M. Oschatz, S. Krause, N. Krans, C.H. Mejía, S. Kaskel, K. de Jong, Influence of precursor porosity on sodium and sulfur promoted iron/carbon FischerTropsch catalysts derived from metal-organic frameworks, Chem. Commun. 53(2017) 10204-10207. [111] A. Ramirez, L. Gevers, A. Bavykina, S. Ould-Chikh, J. Gascon, Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins, ACS Catal. 8(2018) 9174-9182. [112] Y. Pei, Z. Li, Y. Li, Highly active and selective Co-based Fischer-Tropsch catalysts derived from metal-organic frameworks, AIChE J. 63(2017) 2935-2944. [113] B. Sun, H. Tan, S. Liu, S. Lyu, X. Zhang, Y. Zhang, J. Li, L. Wang, Novel cobalt catalysts supported on metal-organic frameworks MIL-53(Al) for the Fischer-Tropsch synthesis, Energy Technol. 7(2019) 1800802. [114] J.M. Cho, B.G. Kim, G.Y. Han, J. Sun, H.K. Jeong, J.W. Bae, Effects of metalorganic framework-derived iron carbide phases for CO hydrogenation activity to hydrocarbons, Fuel 281(2020) 118779. [115] A. Martínez, J. Rollán, M.A. Arribas, H.S. Cerqueira, A.F. Costa, E.F.S. Aguiar, A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer-Tropsch catalysts, J. Catal. 249(2007) 162-173. [116] S. Bessell, Investigation of bifunctional zeolite supported cobalt FischerTropsch catalysts, Appl. Catal. B 126(1995) 235-244. [117] A.N. Pour, Y. Zamani, A. Tavasoli, S.M.K. Shahri, S.A. Taheri, Study on products distribution of iron and iron-zeolite catalysts in Fischer-Tropsch synthesis, Fuel 87(2008) 2004-2012. [118] H.H. Nijs, P.A. Jacobs, J.B. Uytterhoeven, Chain limitation of Fischer-Tropsch products in zeolites, J. Chem. Soc., Chem. Commun. 4(1979) 180-181. [119] X. Li, J. He, M. Meng, Y. Yoneyama, N. Tsubaki, One-step synthesis of H-b zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity, J. Catal. 265(2009) 26-34. [120] G. Yang, C. Xing, W. Hirohama, Y. Jin, C. Zeng, Y. Suehiro, T. Wang, Y. Yoneyama, N. Tsubaki, Tandem catalytic synthesis of light isoparaffin from syngas via Fischer-Tropsch synthesis by newly developed core-shell-like zeolite capsule catalysts, Catal. Today. 215(2013) 29-35. [121] Y. Xu, D. Liu, X. Liu, Conversion of syngas toward aromatics over hybrid Febased Fischer-Tropsch catalysts and HZSM-5 zeolites, Appl. Catal. B 552(2018) 168-183. [122] T. Wang, Y. Xu, C. Shi, F. Jiang, B. Liu, X. Liu, Direct production of aromatics from syngas over a hybrid FeMn Fischer-Tropsch catalyst and HZSM-5 zeolite:local environment effect and mechanism-directed tuning of the aromatic selectivity, Catal. Sci. Technol. 9(2019) 3933-3946. [123] B. Sun, G. Yu, J. Lin, K. Xu, Y. Pei, S. Yan, M. Qiao, K. Fan, X. Zhang, B. Zong, A highly selective Raney Fe@HZSM-5 Fischer-Tropsch synthesis catalyst for gasoline production:One-pot synthesis and unexpected effect of zeolites, Catal. Sci. Technol. 2(2012) 1625-1629. [124] J. Kim, S. Lee, K. Cho, K. Na, C. Lee, R. Ryoo, Mesoporous MFI zeolite nanosponge supporting cobalt nanoparticles as a Fischer-Tropsch catalyst with high yield of branched hydrocarbons in the gasoline range, ACS Catal. 4(2014) 3919-3927. [125] C. Xing, G. Yang, M. Wu, R. Yang, L. Tan, P. Zhu, Q. Wei, J. Li, J. Mao, Y. Yoneyama, Hierarchical zeolite Y supported cobalt bifunctional catalyst for facilely tuning the product distribution of Fischer-Tropsch synthesis, Fuel 148(2015) 48-57. [126] J. Pr ech, D.R. Strossi Pedrolo, N.R. Marcilio, B. Gu, A.S. Peregudova, M. Mazur, V.V. Ordomsky, V. Valtchev, A.Y. Khodakov, Core-shell metal zeolite composite catalysts for in situ processing of Fischer-Tropsch hydrocarbons to gasoline type fuels, ACS Catal., 10(2020) 2544-2555. [127] X.G. Li, C. Liu, J. Sun, H. Xian, Y.S. Tan, Z. Jiang, A. Taguchi, M. Inoue, Y. Yoneyama, T. Abe, Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances, Sci. Rep. 3(2013) 2813. [128] E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal. B 161(1997) 59-78. [129] G.L. Bezemer, J.H. Bitter, H.P. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. van Dillen, K.P. de Jong, Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts, J. Am. Chem. Soc. 128(2006) 3956-3964. [130] G. Prieto, A. Martínez, P. Concepción, R. Moreno-Tost, Cobalt particle size effects in Fischer-Tropsch synthesis:structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts, J. Catal. 266(2009) 129-144. [131] S. Rane, Ø. Borg, E. Rytter, A. Holmen, Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt FischerTropsch catalysts, Appl. Catal. B 437(2012) 10-17. [132] Q. Cheng, Y. Tian, S. Lyu, N. Zhao, K. Ma, T. Ding, Z. Jiang, L. Wang, J. Zhang, L. Zheng, F. Gao, L. Dong, N. Tsubaki, X. Li, Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of FischerTropsch synthesis, Nat. Commun. 9(2018) 3250. [133] T. Komaya, A.T. Bell, Z. Wengsieh, R. Gronsky, F. Engelke, T.S. King, M. Pruski, Effects of dispersion and metal-metal oxide interactions on Fischer-Tropsch synthesis over Ru/TiO2 and TiO2-promoted Ru/SiO2, J. Catal. 150(1994) 400-406. [134] J. Xu, X. Su, H. Duan, B. Hou, Q. Lin, X. Liu, X. Pan, G. Pei, H. Geng, Y. Huang, Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation, J. Catal. 333(2016) 227-237. [135] Y. Zhang, X. Yang, X. Yang, H. Duan, H. Qi, Y. Su, B. Liang, H. Tao, B. Liu, D. Chen, Tuning reactivity of Fischer-Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts, Nat. Commun. 11(2020) 3185. |
[1] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[2] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[3] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets[J]. 中国化学工程学报, 2023, 57(5): 319-328. |
[4] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136. |
[5] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials[J]. 中国化学工程学报, 2023, 54(2): 1-10. |
[6] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine[J]. 中国化学工程学报, 2023, 54(2): 316-322. |
[7] | Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review[J]. 中国化学工程学报, 2023, 53(1): 142-154. |
[8] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions[J]. 中国化学工程学报, 2022, 49(9): 161-169. |
[9] | Xin Yong, Hong Chen, Huawang Zhao, Miao Wei, Yingnan Zhao, Yongdan Li. Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NOx by NH3[J]. 中国化学工程学报, 2022, 46(6): 184-193. |
[10] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent[J]. 中国化学工程学报, 2022, 46(6): 194-206. |
[11] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture[J]. 中国化学工程学报, 2022, 46(6): 207-213. |
[12] | Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture[J]. 中国化学工程学报, 2022, 43(3): 24-30. |
[13] | Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH[J]. 中国化学工程学报, 2022, 43(3): 62-69. |
[14] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate[J]. 中国化学工程学报, 2022, 43(3): 116-123. |
[15] | Pengtao Guo, Miao Chang, Tongan Yan, Yuxiao Li, Dahuan Liu. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas[J]. 中国化学工程学报, 2022, 42(2): 10-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||