[1] H.J. Ge, L.H. Shen, H.C. Bai, S.W. Ma, S.Y. Yin, P. Lu, T. Song, Characteristics of zhundong coal ash in hematite-based chemical looping combustion, Energy Fuels 34(7) (2020) 8150-8166. [2] K.Q. Jiang, H. Yu, L.H. Chen, M.X. Fang, M. Azzi, A. Cottrell, K.K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology, Appl. Energy 260(2020) 114316. [3] National Energy Administration, 13th Five-Year Plan for Coal Industry Development, 2016. [4] F.F. Hou, Current status and thinking of safe and efficient green development of coal resources, Resour. Inform. Eng. 35(1) (2020) 40-42. [5] T.M. Ismail, L. Ding, K. Ramzy, Numerical and experimental analysis for simulating fuel reactor in chemical looping combustor system, J. Coal Sci. Technol 9(2020) 551-559. [6] S.Y. Chang, J.K. Zhuo, S. Meng, S.Y. Qin, Q. Yao, Clean coal technologies in China:Current status and future perspectives, Engineering 2(4) (2016) 447-459. [7] Z.Q. Wu, B. Zhang, S. Wu, G.M. Li, S.D. Zhao, Y.W. Li, B.L. Yang, Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier:Products distribution and kinetic analysis on gaseous products from cellulose, Fuel Process. Technol. 193(2019) 361-371. [8] L.S. Fan, L. Zeng, S.W. Luo, Chemical-looping technology platform, AIChE J. 61(1) (2015) 2-22. [9] R. Wadhwani, B. Mohanty, Effects of operating pressure on the key parameters of coal direct chemical looping combustion, J. Coal Sci. Technol. 3(1) (2016) 20-27. [10] Q.J. Guo, X.D. Hu, Y.Z. Liu, W.H. Jia, M.M. Yang, M. Wu, H.J. Tian, H.J. Ryu, Coal chemical-looping gasification of Ca-based oxygen carriers decorated by CaO, Powder Technol. 275(2015) 60-68. [11] Q.J. Guo, Y. Cheng, Y.Z. Liu, W.H. Jia, H.J. Ryu, Coal chemical looping gasification for syngas generation using an Iron-based oxygen carrier, Ind. Eng. Chem. Res. 53(1) (2014) 78-86. [12] M. Arjmand, A.M. Azad, H. Leion, T. Mattisson, A. Lyngfelt, Evaluation of CuAl2O4 as an oxygen carrier in chemical-looping combustion, Ind. Eng. Chem. Res. 51(43) (2012) 13924-13934. [13] Z. Xia, W. Wang, G. Wang, Study of the crystal structure effect and mechanism during chemical looping gasification of coal, J. Energy Inst. 92(5) (2019) 1284-1293. [14] J. Yang, L.P. Ma, S.L. Dong, H.P. Liu, S.Q. Zhao, X.J. Cui, D.L. Zheng, J. Yang, Theoretical and experimental demonstration of lignite chemical looping gasification of phosphogypsum oxygen carrier for syngas generation, Fuel 194(2017) 448-459. [15] M. Alonso, N. Rodriguez, B. Gonzalez, G. Grasa, R. Murillo, J.C. Abanades, Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development, Int. J. Greenh. Gas Control 4(2) (2010) 167-173. [16] Y.N. Wang, X. Tian, H.B. Zhao, K.L. Liu, The use of a low-cost oxygen carrier prepared from red mud and copper ore for in situ gasification chemical looping combustion of coal, Fuel Process. Technol. 205(2020) 106460. [17] M. An, J.J. Ma, W. Wu, T. Ren, X.D. Hu, Q.J. Guo, Chemical looping gasification of yangchang coalwith CuFe2O4 as oxygen carrier, Acta Petrol. Sin. 35(3) (2019) 561-568. [18] X.D. Hu, Studies into Ca-based compound oxygen carriers used in chemicallooping gasification of coal, Qingdao University of Science Technology, Qingdao, 2014. [19] R. Siriwardane, J. Poston, E. Monazam, E. Monazam, G. Richards, Production of hydrogen by steam oxidation of calcium ferrite reduced with various coals, Int. J. Hydrog. Energy 44(14) (2019) 7158-7167. [20] J.H. Wang, J. Du, L.P. Chang, K.C. Xie, Study on the structure and pyrolysis characteristics of Chinese western coals, Fuel Process. Technol. 91(4) (2010) 430-433. [21] C.Z. Li, K.D. Bartle, R. Kandiyoti, Vacuum pyrolysis of maceral concentrates in a wire-mesh reactor, Fuel 72(11) (1993) 1459-1468. [22] B. Strugnell, J.W. Patrick, Rapid hydropyrolysis studies on coal and maceral concentrates, Fuel 75(3) (1996) 300-306. [23] Y. Li, H. Wang, W.C. Li, Z.S. Li, N.S. Cai, CO2 Gasification of a lignite char in microfluidized bed thermogravimetric analysis for chemical looping combustion and chemical looping with oxygen uncoupling, Energy Fuels 33(1) (2019) 449-459. [24] B. Bhui, P. Vairakannu, Experimental and kinetic studies on in-situ CO2 gasification based chemical looping combustion of low ash coal using Fe2O3 as the oxygen carrier, J. CO2 Util. 29(2019) 103-116. [25] Y. De Vos, M. Jacobs, I. van Driessche, P. van der Voort, F. Snijkers, Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production, Int. J. Greenh. Gas Control 70(2018) 12-21. [26] J. Zhang, Thermodynamic Simulation and Experimental Study of Chemical Looping Gasification of Coal with Cooper Ferrite as Oxygen Carriers, Southeast University, Nanjing, 2019. [27] L.M. Lin, D.Y. Liu, J. Jin, Q. Cheng, W. Li, L. Feng, High iron and calcium coal ash as the oxygen carrier for chemical looping combustion, Ind. Eng. Chem. Res. 57(29) (2018) 9725-9736. [28] G.X. Deng, K.Z. Li, Z.H. Gu, X. Zhu, Y.G. Wei, X.M. Cheng, H. Wang, Synergy effects of combined red muds as oxygen carriers for chemical looping combustion of methane, Chem. Eng. J. 341(2018) 588-600. [29] L. Liu, Y. Cao, Q.C. Liu, J. Yang, Experimental and kinetic studies of coal-CO2 gasification in isothermal and pressurized conditions, RSC Adv. 7(4) (2017) 2193-2201. [30] L.Y. Chen, J.H. Bao, L. Kong, M. Combs, H.S. Nikolic, Z. Fan, K.L. Liu, The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion, Appl. Energy 184(2016) 9-18. [31] R.V. Siriwardane, E. Ksepko, H.J. Tian, J. Poston, T. Simonyi, M. Sciazko, Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal, Appl. Energy 107(2013) 111-123. [32] K. Wang, Q.B. Yu, Q. Qin, L.M. Hou, W.J. Duan, Thermodynamic analysis of syngas generation from biomass using chemical looping gasification method, Int. J. Hydrog. Energy 41(24) (2016) 10346-10353. [33] C. Saha, S. Bhattacharya, Determination and comparison of CuO reduction/oxidation kinetics in CLC experiments with CO/air by the shrinking core model and its characterization, Energy Fuels 28(5) (2014) 3495-3510. [34] Z.Q. Wu, W.C. Yang, B.L. Yang, Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass:effects of nannochloropsis and chlorella, Bioresour. Technol. 249(2018) 501-509. [35] Z.Q. Wu, S.Z. Wang, J. Zhao, L. Chen, H.Y. Meng, Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during co-pyrolysis, Energy Fuels 28(3) (2014) 1792-1801. [36] Z.Q. Wu, W.C. Yang, X.Y. Tian, B.L. Yang, Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass, Energy Conv. Manag. 135(2017) 212-225. [37] X.K. Xu, R.M. Pan, R.Y. Chen, D.D. Zhang, Comparative pyrolysis characteristics and kinetics of typical hardwood in inert and oxygenous atmosphere, Appl. Biochem. Biotechnol. 190(1) (2020) 90-112. [38] F.Q. Guo, Y.P. Dong, Z.C. Lv, P.F. Fan, S. Yang, L. Dong, Pyrolysis kinetics of biomass (herb residue) under isothermal condition in a micro fluidized bed, Energy Conv. Manag. 93(2015) 367-376. [39] T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn. 38(11) (1965) 1881-1886. [40] Z.Q. Wu, W.C. Yang, Y.W. Li, B. Zhang, B.L. Yang, On-line analysis on the interaction between organic compounds from co-pyrolysis of microalgae and low-rank coal:Thermal behavior and kinetic characteristics, Bioresour. Technol. 268(2018) 672-676. [41] H.J. Song, G.R. Liu, J.Z. Zhang, J.H. Wu, Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method, Fuel Process. Technol. 156(2017) 454-460. [42] N. Mao, Q. Wang, Y. Yang, D. Xu, W. Feng, J. Zhang, H. Bai, Q. Guo, Pyrolysis characteristics and kinetics analysis of qinghua coal, ningxia based on chemical bonding characteristics of macerals, CIESC J. 71(2) (2020) 811-820. (in Chinese) [43] H. Merdun, Z.B. Laougé, Kinetic and thermodynamic analyses during copyrolysis of greenhouse wastes and coal by TGA, Renew. Energy 163(2021) 453-464. [44] Y. Xu, Y.F. Zhang, Y. Wang, G.J. Zhang, L. Chen, Gas evolution characteristics of lignite during low-temperature pyrolysis, J. Anal. Appl. Pyrolysis 104(2013) 625-631. |