1 Wang, R.Z., Li, Y., “Perspectives for natural working fluids in China”, Int. J. Refrigeration, 30, 568-581 (2007). 2 Lorentzen, G., “The use of natural refrigerants: A complete solution to the CFC/HCFC predicament”, Int. J. Refrig., 18, 190-197 (1995). 3 Pronk, P., “Fluidized bed heat exchangers to prevent fouling in ice slurry systems and industrial crystallizers”, Ph.D. Thesis, Delft Univ. of Tech., Delft (2006). 4 Sari, A., Kaygusuz, K., “Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications”, Chin. J. Chem. Eng., 14 (2), 270-275 (2006). 5 Ashok, S., Banerjee, R., “Optimal cool storage capacity for load management”, Energy, 28, 115-126 (2003). 6 Egolf, P.W., “Ice slurry: A promising technology”, Technical Notes on Refrigerating Technologies, International Institute of Refrigeration/IIF, Paris, France (2004). 7 Egolf, P.W., Kauffeld, M., “From physical properties of ice slurries to industrial ice slurry applications”, Int. J. Refrig., 28, 4-12 (2005). 8 Wang, M.J., Kumusoto, N., “Ice slurry based thermal storage in multifunctional buildings”, Heat Mass Transfer, 37, 597-604 (2001). 9 Patience, D.B., Rawlings, J.B., Mohameed, H.A., “Crystallization of para-xylene in scraped-surface crytallizers”, AIChE J., 47,2441-2451 (2001). 10 Stamatiou, E., Meewisse, J.W., Kawaji, M., “Ice slurry generation involving moving parts”, Int. J. Refrig., 28, 60-72 (2005). 11 Russel, A.B., Cheney, P.E., Wantling, S.D., “Influence of freezing conditions on ice crystallization in ice cream”, J. Food Eng., 39,179-191 (1999). 12 Trommelen, A.M., Beek, W.J., Westelaken, H.C.V.D., “The mechanism of heat transfer in a rotator type scraped-surface heat exchanger”, Chem. Eng. Sci., 26, 1987-2001 (1971). 13 Stamatiou, E., “Experimental study of the ice slurry thermal-hydraulic characteristics in compact plate heat exchangers”, Ph.D. Thesis, Toronto Univ., Canada (2003). 14 Wang, M.J., Goldstein, V., “A novel ice slurry generator system and its applications”, In: Refrigeration Science and Technology Proceedings—Applications for Natural Refrigerants, Aahrus, Denmark,543-551 (1996). 15 Chuard, M., Fortuin, J.P., “COLDECO—A new technology system for production and storage of ice”, In: Proceedings of the First Workshop on Ice Slurries of the International Institute of Refrigeration, Yverdon-les-Bains, Switzerland (1999). 16 Klaren, D.G., Meer, J.S.V.D., “A fluidized bed chiller: A new approach in making slush-ice”, In: Industrial Energy Technology Conference Houston Proceeding, Texas A&M University, USA (1991). 17 Meewisse, J.W., “Fluidized bed ice slurry generator for enhanced secondary cooling systems”, Ph.D. Thesis, Delft Univ. Tech., Delft (2004). 18 Tanino, M., Kozawa, Y., Mito, D., Inada, T., “Development of active control method for super-cooling releasing of water”, In: Proceedings of the Second Workshop on Ice Slurries of the International Institute of Refrigeration, Paris, France (2000). 19 Indada, T., Zhang, X., “Active control of phase change from super-cooled water to ice by ultrasonic vibration (1) Control of freezing temperature”, Int. J. Heat Mass Transsfer, 44, 4523-4531 (2001). 20 Zhang, X., Indada, T., “Active control of phase change from supercooled water to ice by ultrasonic vibration (2) Generation of ice slurries and effect of bubble nuclei”, Int. J. Heat Mass Transfer, 44,4533-4539 (2001). 21 James, C.L., Kam, C.N., “Effect of ice nucleators on snow making and spray freezing”, Ind. Eng. Chem. Res., 29, 361-366 (1990). 22 Kim, B.S., Shina, H.T., Lee, Y.P., Jurng, J., “Study on ice slurry production by water spray”, Int. J. Refrig., 24, 176-184 (2001). 23 Shina, H.T., Lee, Y.P., “Spherical-shaped ice particle production by spraying water in a vacuum chamber”, Appl. Therm. Eng., 20,439-454 (2000). 24 Saito, A., “Recent advances in research on cold thermal energy storage”, Int. J. Refrig., 25, 177-189 (2002). 25 Kitanovski, A., Vuarnoz, D., Ata-Caesar, D., Egolf, P.W., Hansen, T.M., Doetsch, C., “The fluid dynamics of ice slurry”, Int. J. Refrig.,28, 37-50 (2005). 26 Liang, K.F., Peng, Z.B., Yuan, Z.L., Fan, F.X., “Atomization and drop-size distribution of liquid-liquid systems”, J. Chem. Ind. Eng.,58, 1935-1942 (2007). (in Chinese) 27 Richards, J.R., Beris, A.N., Lenhoff, A.M., “Drop formation in liquid-liquid systems before and after jetting”, Phys. Fluid., 7,2617-2630 (1995). 28 Kitron, A., Elperin, T., Tamir, A., “Stochastic modeling of the effects of the liquid droplet collisions in impinging streams absorbers and combustors”, Int. J. Multiphase Flow, 17, 274-282 (1991). 29 Eggers, J., Lister, J.R., “Coalescence of liquid drops”, J. Fluid. Mech., 401, 293-310 (1999). 30 Marion, G., Dicharry, C., Mendibourne, B., “Contributions of the modelization of the surfactant concentration influence on droplet size distribution in oil/water emulsion”, Progr. Collid Polym. Sci.,21, 307-311 (1993). 31 David, P.S., Rutland, C.J., “A new droplet collision algorithm”, J. Com. Phys., 164, 62-80 (2000). 32 Richards, J.R., Lenhoff, A.M., Beris, A.N., “Dynamic breakup of liquid-liquid jets”, Phys. Fluid., 6, 2640-2655 (1994). |