[1] W. Yin, G. Fu, C. Yang, Z. Jiang, K. Zhu, Y. Gao, Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000–2014, Saf. Sci., 92 (2017) 173-179 [2] F. Zhou, T. Xia, X. Wang, Y. Zhang, Y. Sun, J. Liu, Recent developments in coal mine methane extraction and utilization in China: a review, J. Nat. Gas Sci. Eng., 31 (2016) 437-458 [3] R. Gu, X. Wang, H. Xu, Experimental study on suppression of methane explosion with ultra-fine water mist, Fire Saf. Sci., 19 (2010) 51-59 [4] X. Cao, J. Ren, Y. Zhou, Q. Wang, X. Gao, M. Bi, Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive, J. Hazard. Mater., 285 (2015) 311-318 [5] A. Yoshida, T. Okawa, W. Ebina, H. Naito, Experimental and numerical investigation of flame speed retardation by water mist, Combust. Flame, 162 (2015) 1772-1777 [6] W. Ebina, C. Liao, H. Naito, A. Yoshida, Effect of water mist on minimum ignition energy of propane/air mixture, Proc. Combust. Inst., 36 (2017) 3271-3278 [7] X. Wen, M. Wang, T. Su, S. Zhang, P. Kun, J. Tao, Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber, Int. J. Hydrogen Energy, 44 (2019) 32332-32342 [8] B. Pei, J. Li, Y. Wang, X. Wen, M. Yu, G. Jing, Synergistic inhibition effect on methane/air explosions by N2-twin-fluid water mist containing sodium chloride additive, Fuel, 253 (2019) 361-368 [9] B. Jiang, Z. Liu, M. Tang, K. Yang, P. Lv, B. Lin, Active suppression of premixed methane/air explosion propagation by non-premixed suppressant with nitrogen and ABC powder in a semi-confined duct, J. Nat. Gas Sci. Eng., 29 (2016) 141-149 [10] P. Joseph, E. Nichols, V. Novozhilov, A comparative study of the effects of chemical additives on the suppression efficiency of water mist, Fire Saf. J., 58 (2013) 221-225 [11] J. Ingram, A. Averill, P. Battersby, Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 1. Burning velocity, Int. J. Hydrogen Energy, 37 (2012) 19250-19257 [12] P. Battersby, A. Averill, J. Ingram, P. Holborn, P. Nolan, Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 2. Mitigation of vented deflagrations, Int. J. Hydrogen Energy, 37 (2012) 19258-19267 [13] R. Ananth, H. Willauer, J. Farley, W. Frederick, Effects of fine water mist on a confined blast, Fire Technol., 48 (2012) 641-675 [14] H. Shimizu, M. Tsuzuki, Y. Yamazaki, A. Hayashi, Experiments and numerical simulation on methane flame quenching by water mist, J. Loss Prev. Process Ind., 14 (2001) 603-608 [15] T. Parra, F. Castro, C. Méndez, J. Villafruela, M. Rodrı?guez, Extinction of premixed methane–air flames by water mist, Fire Saf. J., 39 (2004) 581-600 [16] A. I. Karpov, A. A. Galat, V. Novozhilov, V. K. Bulgakov, Numerical modeling of the effect of fine water mist on the small scale flame spreading over solid combustibles, Fire Saf. Sci., 8 (2005) 753-764 [17] H. Xu, Y. Li, P. Zhu, X. Wang, H. Zhang, Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles, J. Loss Prevent. Proc., 26 (2013) 815-820 [18] A. Harrison, J. Eyre, The effect of obstacle arrays on the combustion of large premixed gas/air clouds, Combust. Sci. Technol., 52 (1987) 121-137 [19] H. Phylaktou, G. Andrews, The acceleration of flame propagation in a tube by an obstacle, Combust. Flame, 85 (1991) 363-379 [20] G. Thomas, On the conditions required for explosion mitigation by water sprays, Process Saf. Environ. Prot., 78 (2000) 339-354 [21] A. Yoshida, K. Kashiwa, S. Hashizume, H. Naito, Inhibition of counterflow methane/air diffusion flame by water mist with varying mist diameter, Fire Saf. J., 71 (2015) 217-225 [22] D. Yankelevsky, V. Feldgun, Y. Karinski, Underground explosion of a cylindrical charge near a buried wall, Int. J. of Impact Eng., 35 (2008) 905-919 [23] M. Fairweather, G. Hargrave, S. Ibrahim, D. Walker, Studies of premixed flame propagation in explosion tubes. Combust. Flame, 116 (1999) 504-518 [24] G. Cowan, O. Bergmann, A. Holtzman, Mechanism of bond zone wave formation in explosion-clad metals, Metall. Trans. B., 2 (1971) 3145-3155 [25] X. Wen, H. Ding, T. Su, F. Wang, H. Deng, K. Zheng, Effects of obstacle angle on methane–air deflagration characteristics in a semi-confined chamber, J. Loss Prev. Process Ind., 45 (2017) 210-216 [26] W. Tan, D. Lü, L. Liu, G. Zhu, N. Jiang, Suppression of methane/air explosion by water mist with potassium halide additives driven by CO2, Chin. J. Chem. Eng., 27 (2019) 2742-2748 [27] M. Yu, D. Liang, Y. Xu, K. Zheng, W. Ji, Experimental study on inhibiting the gas explosion by charged water mist, J. China Coal Soc., 39 (2014) 2232-2238 [28] Q. Bao, Q. Fang, S. Yang, Y. Zhang, H. Xiang, L. Chen, Z. Li, Experimental investigation on the deflagration load under unconfined methane-air explosions, Fuel, 185 (2016) 565-576 [29] X. Cao, J. Ren, M. Bi, Y. Zhou, Q. Wang, Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive, J. Loss Prev. Process Ind., 43 (2016) 352-360 [30] L. Wang, H. Ma, Z. Shen, D. Chen, The influence of an orifice plate on the explosion characteristics of hydrogen-methane-air mixtures in a closed vessel, Fuel, 256 (2019) 115908 [31] L. Boeck, A. Kink, D. Oezdin, J. Hasslberger, T. Sattelmayer, Influence of water mist on flame acceleration, DDT and detonation in H2-air mixtures, Int. J. Hydrogen Energy, 40 (2015) 6995-7004 [32] M. Bidabadi, Q. Xiong, M. Harati, E. Yaghoubi, M. Doranehgard, A. Rahbari, Study on the combustion of micro organic dust particles in random media with considering effect of thermal resistance and temperature difference between gas and particles, Chem. Eng. Process, 126 (2018) 239-247 [33] R. Seiser, The influence of water on extinction and ignition of hydrogen and methane flames, Proc. Combust. Inst., 30 (2005) 407-414 [34] X. Yang X, M. Yu, K. Zheng, S. Wan, L. Wang, An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct, Fuel, 237 (2019) 619-629 [35] Z. Cao, T. Zhu, Effects of CO2 Dilution on Methane Ignition in Moderate or Intense Low-oxygen Dilution (MILD) Combustion: A Numerical Study, Chin. J. Chem. Eng., 20 (2012) 701-709 [36] L. Yang, X. Wang, D. Liu, G. Cui, B. Dou, J. Wang, S. Hao, Accelerated methane storage in clathrate hydrates using surfactant-stabilized suspension with graphite nanoparticles, Chin. J. Chem. Eng., 28 (2020) 1112-1119 [37] X. Lv, L. Zheng,Y. Zhang, M. Yu, Y. Su, Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–air explosion, Int. J. Hydrogen Energy, 41 (2016) 17740-17749 [38] H. Moghadasi, N. Malekian, A. Poorfar, M. Bidabadi, Thermal radiative study of counterflow combustion of porous particles, Chem. Eng. Process, 134 (2018) 163-173 [39] K. Adiga, D. Heather, A. Ramagopal, W. Frederick, Implications of droplet breakup and formation of ultra-fine mist in blast mitigation, Fire Safety J., 44 (2009) 363-369 [40] S. Yang, J. Lew, M. Mueller, Large Eddy Simulation of soot evolution in turbulent reacting flows: Presumed sub-filter PDF model for soot–turbulence–chemistry interactions, Combust. Flame, 209 (2019) 200-213 [41] Y. Liang, W. Zeng, Numerical study of the effect of water addition on gas explosion, J. Hazard. Mater., 174 (2010) 386-392 [42] M. Baigmohammadi, S. Tabejamaat, M. Yeganeh, Experimental study of methane-oxygen premixed flame characteristics in non-adiabatic micro-reactors, Chem. Eng. Process, 142 (2019) 107590 [43] D. Park, Y. Lee, A. Green, Experiments on the effects of multiple obstacles in vented explosion chambers, J. Hazard. Mater, 153 (2008) 340-350 [44] X. Wen, M. Yu, Z. Liu, Z. Li, W. Ji, M. Xie, Effects of cross-wise obstacle position on methane–air deflagration characteristics, J. Loss Prev. Process Ind., 26 (2013) 1335-1340 [45] X. Wen, T. Su, F. Wang, H. Deng, K. Zheng, B. Pei, Inert nanoparticle suppression of gas explosion in the presence of obstacles, RSC Adv., 8 (2018) 39120-39125 [46] Z. Qu, Numerical study on shock wave propagation with obstacles during methane explosion, Appl. Mech. Mater., 33 (2010) 114-118 [47] K. Oh, H. Kim, J. Kim, S. Lee, A study on the obstacle-induced variation of the gas explosion characteristics, J. Loss Prev. Process Ind., 14 (2001) 597-602 [48] I. Moen, M. Donato, R. Knystautas, J. Lee, Flame acceleration due to turbulence produced by obstacles, Combust. Flame, 39 (1980) 21-32 [49] V. Gamezo, T. Ogawa, E. Oran, Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing, Combust. Flame, 155 (2008) 302-315 [50] Q. Baker, M. Tang, E. Scheier, G. Silva, Vapor cloud explosion analysis, Process Saf. Prog., 15 (1996) 106-109 [51] A. Modak, A. Abbud-Madrid, J. Delplanque, R. Kee, The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames, Combust. Flame, 144 (2006) 103-111 [52] B. Rankin, D. Richardson, A. Caswell, A. Naples, J. Hoke, F. Schauer, Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine, Combust. Flame, 176 (2017) 12-22 |