[1] D.J. Lamberto, M.M. Alvarez, F.J. Muzzio, Computational analysis of regular and chaotic mixing in a stirred tank reactor, Chem. Eng. Sci. 56(16)(2001) 4887-4899. [2] J. Dusting, J. Sheridan, K. Hourigan, A fluid dynamics approach to bioreactor design for cell and tissue culture, Biotechnol. Bioeng. 94(6)(2006)1196-1208. [3] D. Bulnes-Abundis, L.M. Carrillo-Cocom, D. Aráiz-Hernández, A. García-Ulloa, M. Granados-Pastor, P.B. Sánchez-Arreola, G. Murugappan, M.M. Alvarez, A simple eccentric stirred tank mini-bioreactor:Mixing characterization and mammalian cell culture experiments, Biotechnol. Bioeng. 110(4)(2013)1106-1118. [4] K.W. Norwood, A.B. Metzner, Flow patterns and mixing rates in agitated vessels, AIChE J. 6(3)(1960)432-437. [5] S. Hashimoto, H. Ito, Y. Inoue, Experimental study on geometric structure of isolated mixing region in impeller agitated vessel, Chem. Eng. Sci. 64(24) (2009)5173-5181. [6] N. Ohmura, T. Makino, T. Kaise, K. Kataoka, Transition of organized flow structure in a stirred vessel at low Reynolds numbers, J. Chem. Eng. Japan 36(12)(2003)1458-1463. [7] Y.W. Fan, S.B. Wang, H. Wang, J.X. Xu, Q.T. Xiao, Y.G. Wei, Formation mechanism and chaotic reinforcement elimination of the mechanical stirring isolated mixed region, Int. J. Chem. React. Eng. 19(3)(2021)239-250. [8] A.A. Abatan, J.J. McCarthy, W.L. Vargas, Particle migration in the rotating flow between co-axial disks, AIChE J. 52(6)(2006)2039-2045. [9] T. Makino, N. Ohmura, K. Kataoka, Observation of isolated mixing regions in a stirred vessel, J. Chem. Eng. Jpn. 34(5)(2001)574-578. [10] M.M. Alvarez, P.E. Arratia, F.J. Muzzio, Laminar mixing in eccentric stirred tank systems, Can. J. Chem. Eng. 80(4)(2008)546-557. [11] D.J. Lamberto, F.J. Muzzio, P.D. Swanson, A.L. Tonkovich, Using timedependent RPM to enhance mixing in stirred vessels, Chem. Eng. Sci. 51(5) (1996)733-741. [12] D.J. Lamberto, M.M. Alvarez, F.J. Muzzio, Experimental and computational investigation of the laminar flow structure in a stirred tank, Chem. Eng. Sci. 54(7)(1999)919-942. [13] S. Wang, J. Wu, E. Bong, Reduced IMRs in a mixing tank via agitation improvement, Chem. Eng. Res. Des. 91(6)(2013)1009-1017. [14] T. Makino, T. Kaise, K. Sasaki, N. Ohmura, K. Kataoka, Isolated mixing region in a Taylor-vortex-flow reactor, KAGAKU KOGAKU RONBUN. 27(5)(2001)566-573. [15] Z. Zhong, G. Chen, Chaotic motion generation with applications to liquid mixing, In:Proceding of the 2005 European Conference on Circuit Theory& Design, Cork, Ireland, IEEE (2005)225-228. [16] S. Woziwodzki, Ł. Jędrzejczak, Effect of eccentricity on laminar mixing in vessel stirred by double turbine impellers, Chem. Eng. Res. Des. 89(11)(2011) 2268-2278. [17] S. Woziwodzki, Mixing of viscous Newtonian fluids in a vessel equipped with steady and unsteady rotating dual-turbine impellers, Chem. Eng. Res. Des. 92(3)(2014)435-446. [18] T. Makino, T. Kaise, N. Ohmura, K. Kataoka, Laser-optical observation of chaotic mixing structure in a stirred vessel Laser Techniques for Fluid Mechanics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 399-410. [19] S. Hashimoto, H. Ito, Y. Nakata, Y. Ishikawa, Y. Inoue, Geometric structure and formation condition of corded isolated-mixing region in impeller agitated vessel, J. Chem. Eng. Japan 44(11)(2011)845-851. [20] M.M. Alvarez, J.M. Zalc, T. Shinbrot, P.E. Arratia, F.J. Muzzio, Mechanisms of mixing and creation of structure in laminar stirred tanks, AIChE J. 48(10) (2002)2135-2148. [21] Y. Inoue, Y. Hirata, Numerical analysis of chaotic mixing in plane cellular flow. II. mixedness and final mixing pattern, KAGAKU KOGAKU RONBUNSHU 26(1) (2000)31-39. [22] I.C. Christov, J.M. Ottino, R.M. Lueptow, Streamline jumping:A mixing mechanism, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 2)(2010) 046307. [23] I.C. Christov, J.M. Ottino, R.M. Lueptow, Chaotic mixing via streamline jumping in quasi-two-dimensional tumbled granular flows, Chaos 20(2) (2010)023102. [24] Y. Inoue, D. Takaoka, B. Okada, K. Natami, S. Hashimoto, Y. Hirata, Analysis of fluid mixing in an agitated vessel based on a streakline, KAGAKU KOGAKU RONBUNSHU 35(3)(2009)265-273. [25] Y. Inoue, S. Hashimoto, Analysis of mechanism of laminar fluid mixing in 3-D mixing tank based on streakline lobes, KAGAKU KOGAKU RONBUNSHU 36(4) (2010)355-365. [26] S. Hashimoto, K. Natami, Y. Inoue, Mechanism of mixing enhancement with baffles in impeller-agitated vessel, part I:A case study based on crosssections of streak sheet, Chem. Eng. Sci. 66(20)(2011)4690-4701. [27] P.E. Arratia, J.P. Lacombe, T. Shinbrot, F.J. Muzzio, Segregated regions in continuous laminar stirred tank reactors, Chem. Eng. Sci. 59(7)(2004)1481-1490. [28] H. Furukawa, S. Ohtani, Y. Kato, Y. Tada, Effects of location of baffle and clearance between baffle and vessel wall on isolated mixing regions, J. Chem. Eng. Japan 51(1)(2018)29-32. [29] S. Hashimoto, R. Osaka, M. Kawamata, Analysis on laminar chaotic mixing based on configuration of streak lobes in an impeller-agitated vessel, Ind. Eng. Chem. Res. 51(19)(2012)6939-6947. [30] D. Bulnes-Abundis, M.M. Alvarez, The simplest stirred tank for laminar mixing:Mixing in a vessel agitated by an off-centered angled disc, AIChE J. 59(8)(2013)3092-3108. [31] M.M. Alvarez, A. Guzmán, M. Elías, Experimental visualization of mixing pathologies in laminar stirred tank bioreactors, Chem. Eng. Sci. 60(8-9) (2005)2449-2457. [32] M. Alvarez, Using spatio-temporal asymmetry to enhance mixing in chaotic flows:From maps to stirred tanks Ph.D. Thesis, Rutgers The State University of New Jersey-New Brunswick, 2000. [33] A.D. HarveyIII, D.H. WestIII, N.B. TufillaroIII, Evaluation of laminar mixing in stirred tanks using a discrete-time particle-mapping procedure, Chem. Eng. Sci. 55(3)(2000)667-684. [34] J.M. Zalc, M.M. Alvarez, F.J. Muzzio, B.E. Arik, Extensive validation of computed laminar flow in a stirred tank with three Rushton turbines, AIChE J. 47(10)(2001)2144-2154. [35] J.M. Zalc, E.S. Szalai, M.M. Alvarez, F.J. Muzzio, Using CFD to understand chaotic mixing in laminar stirred tanks, AIChE J. 48(10)(2002)2124-2134. [36] J.R. Vallejos, Y. Kostov, A. Ram, J.A. French, M.R. Marten, G. Rao, Optical analysis of liquid mixing in a minibioreactor, Biotechnol. Bioeng. 93(5)(2006) 906-911. [37] F. Cabaret, L. Fradette, P.A. Tanguy, Effect of shaft eccentricity on the laminar mixing performance of a radial impeller, Can. J. Chem. Eng. 86(6)(2008)971-977. [38] D. Gu, Z. Liu, J. Li, Z. Xie, C. Tao, Y. Wang, Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor, Chem. Eng. Process. 122(2017)1-9. [39] S. Woziwodzki, Unsteady mixing characteristics in a vessel with forwardreverse rotating impeller, Chem. Eng. Technol. 34(5)(2011)767-774. [40] Z. Liu, C. Chen, R. Liu, C. Tao, Y. Wang, Chaotic mixing enhanced by rigidflexible impeller in stirred vessel, CIESC J. 65(2014)61-70.(in Chinese) [41] F.J. Muzzio, P.D. Swanson, J.M. Ottino, The statistics of stretching and stirring in chaotic flows, Phys. Fluids A:Fluid Dyn. 3(5)(1991)822-834. [42] Z.G. Sun, G. Xi, X. Chen, A numerical study of stir mixing of liquids with particle method, Chem. Eng. Sci. 64(2)(2009)341-350. [43] K.C. Ng, E.Y.K. Ng, Laminar mixing performances of baffling, shaft eccentricity and unsteady mixing in a cylindrical vessel, Chem. Eng. Sci. 104(2013)960-974. [44] M.N. Noui-Mehidi, N. Ohmura, J. Wu, B.V. Nguyen, N. Nishioka, T. Takigawa, Characterisation of isolated mixing regions in a stirred vessel, Int. J. Chem. React. Eng. 6(1)(2008)1-10. [45] M.M. Alvarez-Hernández, T. Shinbrot, J. Zalc, F.J. Muzzio, Practical chaotic mixing, Chem. Eng. Sci. 57(17)(2002)3749-3753. [46] Y. Kato, Y. Tada, M. Ban, Y. Nagatsu, K. Yanagimoto, Application of asymmetric impellers to mixing at unsteady speed within a single revolution, KAGAKU KOGAKU RONBUNSHU 33(1)(2007)16-19. [47] W.M. Yek, M.N. Noui-Mehidi, R. Parthasarathy, Intensification of flow characteristics in a laminar flow stirred tank using modified impeller designs, J. Chem. Eng. Japan 43(1)(2010)13-16. [48] Z. Driss, S. Karray, H. Kchaou, M. Abid, CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons and double helical screw ribbons impellers, Open Eng. 1(4)(2011)413-422. [49] Y. Zhang, J. He, Numerically simulating influence of undulating motion mode of biomimetic fish fin on its motion performance, Mech. Sci. and Technol. 32(3)(2013)435-440. [50] R.L. Campbell, E.G. Paterson, Fluid-structure interaction analysis of flexible turbomachinery, J. Fluids Struct. 27(8)(2011)1376-1391. [51] J.Y. Dieulot, G. Delaplace, R. Guerin, J.P. Brienne, J.C. Leuliet, Laminar mixing performances of a stirred tank equipped with helical ribbon agitator subjected to steady and unsteady rotational speed, Chem. Eng. Res. Des. 80(4)(2002)335-344. [52] J.Y. Dieulot, N. Petit, P. Rouchon, G. Delaplace, An arrangement of ideal zones with shifting boundaries as a way to model mixing processes in unsteady stirring conditions in agitated vessels, Chem. Eng. Sci. 60(20)(2005)5544-5554. [53] S. Senda, Y. Komoda, Y. Hirata, H. Takeda, H. Suzuki, R. Hidema, Characteristics of flow filed induced by a rotationally reciprocating plate impeller, J. Chem. Eng. Japan 49(4)(2016)341-349. [54] Y. Hirata, T. Dote, T. Yoshioka, Y. Komoda, Y. Inoue, Performance of chaotic mixing caused by reciprocating a disk in a cylindrical vessel, Chem. Eng. Res. Des. 85(5)(2007)576-582. [55] Y. Komoda, Y. Inoue, Y. Hirata, Mixing performance by reciprocating disk in cylindrical vessel, J. Chem. Eng. Japan 33(6)(2000)879-885. [56] Y. Komoda, Y. Inoue, Y. Hirata, Characteristics of laminar flow induced by reciprocating disk in cylindrical vessel, J. Chem. Eng. Japan 34(7)(2001)919-928. [57] P. Mavros, Flow visualization in stirred vessels-A review of experimental techniques, Chem. Eng. Res. Des. 79(A2)(2001)113-127. [58] J.Q. Zhang, X.W. Li, R.B. He, J. Liang, Study on double-shaft mixing paddle undergoing planetary motion in the laminar flow mixing system, Adv. Mech. Eng. 7(7)(2015), 168781401559260. [59] K. Takahashi, M. Motoda, Chaotic mixing created by object inserted in a vessel agitated by an impeller, Chem. Eng. Res. Des. 87(4)(2009)386-390. [60] W.M. Yek, M.N. Noui-Mehidi, R. Parthasarathy, S.N. Bhattacharya, J. Wu, N. Ohmura, N. Nishioka, Enhanced mixing of Newtonian fluids in a stirred vessel using impeller speed modulation, Can. J. Chem. Eng. 87(6)(2009)839-846. [61] F. Cabaret, L. Fradette, P.A. Tanguy, New turbine impellers for viscous mixing, Chem. Eng. Technol. 31(12)(2008)1806-1815. [62] K. Takahashi, D. Shigihara, Y. Takahata, Laminar mixing in eccentric stirred tank with different bottom, J. Chem. Eng. Japan 44(12)(2011)931-935. [63] J. Karcz, J. Szoplik, An effect of the eccentric position of the propeller agitator on the mixing time, Chem. Pap. 58(1)(2004)9-14. [64] J. Karcz, M. Cudak, J. Szoplik, Stirring of a liquid in a stirred tank with an eccentrically located impeller, Chem. Eng. Sci. 60(8-9)(2005)2369-2380. [65] G. Ascanio, E. Brito-de la Fuente, R. Yatomi, P.A. Tanguy, Design considerations in laminar fluid mixing with unconventional geometries, Front. Sci. Eng. 2(2012)15. [66] S. Wang, J. Wu, N. Ohmura, Inclined-shaft agitation for improved viscous mixing, Ind. Eng. Chem. Res. 52(33)(2013)11741-11751. [67] K. Takahashi, Y. Takahata, K. Kurisaka, H. Sekine, Mixing performance experiments in an agitated vessel equipped with a pitched paddle subjected to unsteady agitation, J. Chem. Eng. Japan 44(11)(2011)852-858. [68] T. Nomura, T. Uchida, K. Takahashi, Enhancement of mixing by unsteady agitation of an impeller in an agitated vessel, J. Chem. Eng. Japan 30(5)(1997) 875-879. [69] M. Yoshida, Y. Nagai, K. Yamagiwa, A. Ohkawa, S. Tezura, Turbulent and laminar mixings in an unbaffled agitated vessel with an unsteadily angularly oscillating impeller, Ind. Eng. Chem. Res. 48(3)(2009)1665-1672. [70] M. Yoshida, M. Shigeyama, T. Hiura, K. Yamagiwa, A. Ohkawa, S. Tezura, Liquid-phase mixing in an unbaffled agitated vessel with an unsteady forward-reverse rotating impeller, Asia-Pacific Jrnl Chem. Eng 2(6)(2007) 659-664. [71] Y. Kato, Y. Tada, M. Ban, Y. Nagatsu, S. Iwata, K. Yanagimoto, Improvement of mixing efficiencies of conventional impeller with unsteady speed in an impeller revolution, J. Chem. Eng. Japan 38(9)(2005)688-691. [72] Y. Murakami, T. Hirose, T. Yamato, H. Fujiwara, M. Ohshima, Improvement in mixing of high viscosity liquid by additional up-and-down motion of a rotating impeller, J. Chem. Eng. Japan 13(4)(1980)318-323. [73] M.J. Clifford, S.M. Cox, Smart baffle placement for chaotic mixing, Nonlinear Dyn. 43(1-2)(2006)117-126. [74] Y. Kato, Y. Tada, S. Nakamichi, Y. Nagatsu, S. Iwata, S. Iwaishi, S. Kajihara, Y.S. Lee, S.T. Koh, Evaluation of unsteady mixing performance using a servo motor, KAGAKU KOGAKU RONBUNSHU 32(6)(2006)465-470. [75] N.H. Shahirudin, N. Alatengtuya, T. Kumagai, N. Horie, Ohmura, Effect of temperature change on geometric structure of isolated mixing regions in stirred vessel, Int. J. Chem. Eng. 2012(2012)1-6. [76] M. Rice, J. Hall, G. Papadakis, M. Yianneskis, Investigation of laminar flow in a stirred vessel at low Reynolds numbers, Chem. Eng. Sci. 61(9)(2006)2762-2770. [77] M. Irene Sánchez Cervantes, J. Lacombe, F.J. Muzzio, M.M. Álvarez, Novel bioreactor design for the culture of suspended mammalian cells. Part I: Mixing characterization, Chem. Eng. Sci. 61(24)(2006)8075-8084. [78] G. Segré, A. Silberberg, Radial particle displacements in poiseuille flow of suspensions, Nature 189(4760)(1961)209-210. [79] G. Segre, A. Silberberg, Behaviour of macroscopic rigid spheres in Poiseuille flow, J. Fluid Mech. 14(1962)115-157. [80] J.S. Halow, G.B. Wills, Radial migration of spherical particles in couette systems, AIChE J. 16(2)(1970)281-286. [81] A. Nadim, R.G. Cox, H. Brenner, Transport of sedimenting Brownian particles in a rotating Poiseuille flow, Phys. Fluids 28(12)(1985)3457. [82] J.F. Morris, J.F. Brady, Pressure-driven flow of a suspension:Buoyancy effects, Int. J. Multiph. Flow 24(1)(1998)105-130. [83] B.P. Ho, L.G. Leal, Inertial migration of rigid spheres in two-dimensional unidirectional flows, J. Fluid Mech. 65(2)(1974)365-400. [84] D. Leighton, A. Acrivos, The shear-induced migration of particles in concentrated suspensions, J. Fluid Mech. 181(1987)415. [85] A. Ramachandran, D.T. Leighton, The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions, J. Fluid Mech. 603(2008)207-243. [86] A. Crisanti, M. Falcioni, A. Provenzale, A. Vulpiani, Passive advection of particles denser than the surrounding fluid, Phys. Lett. A 150(2)(1990)79-84. [87] J. Magnaudet, Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow, J. Fluid Mech. 485(2003) 115-142. [88] J. Ye, M.C. Roco, Particle rotation in a Couette flow, Phys. Fluids A:Fluid Dyn. 4(2)(1992)220-224. [89] R.L. Schiek, E.S.G. Shaqfeh, Cross-streamline migration of slender Brownian fibres in plane Poiseuille flow, J. Fluid Mech. 332(1997)23-39. [90] M.R. Maxey, The motion of small spherical particles in a cellular flow field, Phys. Fluids 30(7)(1987)1915. [91] N. Nishioka, Y. Tago, T. Takigawa, M. Noui-Mehidi, J. Wu, N. Ohmura, Particle migration in a stirred vessel at low Reynolds numbers, in:AIDIC Conference Series:Selected Papers of the Eighth Italian Conference on Chemical and Process Engineering, Milano, Italy, 2007, pp. 243-247. [92] N. Nishioka, Observation of inertial particle motion in laminar flow in a stirred vessel, 1, Memoirs of the Graduate School of Engineering Kobe University, 2009, pp. 48-51. [93] S. Wang, R.L. Stewart, G. Metcalfe, Visualization of the trapping of inertial particles in a laminar mixing tank, Chem. Eng. Sci. 143(2016)99-104. [94] G. Metcalfe, Push and pull:Attractors and repellors of a dynamical system can localize inertial particles, Granul. Matter 21(4)(2019)1-8. [95] G. Haller, T. Sapsis, Where do inertial particles go in fluid flows?, Phys D: Nonlinear Phenom. 237(5)(2008)573-583. [96] T. Sapsis, G. Haller, Instabilities in the dynamics of neutrally buoyant particles, Phys. Fluids 20(1)(2008)017102. [97] T. Sapsis, G. Haller, Clustering criterion for inertial particles in twodimensional time-periodic and three-dimensional steady flows, Chaos 20(1)(2010)017515. [98] S. Wang, G. Metcalfe, R.L. Stewart, J. Wu, N. Ohmura, X. Feng, C. Yang, Solid-liquid separation by particle-flow-instability, Energy Environ. Sci. 7(12) (2014)3982-3988. [99] R. Grenville, A. Nienow, Handbook of industrial mixing, John Wiley&Sons Inc, 2004, pp. 507-542. [100] O. Paireau, P. Tabeling, Enhancement of the reactivity by chaotic mixing, Phys. Rev. E 56(2)(1997)2287. [101] Z. Liu, X. Yang, Z. Xie, R. Liu, C. Tao, Y. Wang, Chaotic mixing performance of high-viscosity fluid synergistically intensified by flexible impeller and floating particles, CIESC J. 64(2013)2794-2800.(in Chinese) |