[1] G. Müller, B. Rieger, Propene based thermoplastic elastomers by early and late transition metal catalysis, Prog. Polym. Sci. 27(5) (2002) 815–851. [2] Z.P. Hu, D.D. Yang, Z. Wang, Z.Y. Yuan, State-of-the-art catalysts for direct dehydrogenation of propane to propylene, Chin. J. Catal. 40(9) (2019) 1233–1254. [3] S. Chen, X. Chang, G.D. Sun, T.T. Zhang, Y.Y. Xu, Y. Wang, C.L. Pei, J.L. Gong, Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies, Chem. Soc. Rev. 50(5) (2021) 3315–3354. [4] F.T. Zangeneh, S. Sahebdelfar, M. Bahmani, Propane dehydrogenation over a commercial Pt-Sn/Al2O3 catalyst for isobutane dehydrogenation: optimization of reaction conditions, Chin. J. Chem. Eng. 21(7) (2013) 730–735. [5] A. Guntida, S. Wannakao, P. Praserthdam, J. Panpranot, Acidic nanomaterials (TiO2, ZrO2, and Al2O3) are coke storage components that reduce the deactivation of the Pt–Sn/c-Al2O3 catalyst in propane dehydrogenation, Catal. Sci. Technol. 10(15) (2020) 5100–5112. [6] F. Jiang, L. Zeng, S.R. Li, G. Liu, S.P. Wang, J.L. Gong, Propane dehydrogenation over Pt/TiO2–Al2O3 catalysts, ACS Catal. 5(1) (2015) 438–447. [7] L.D. Deng, H. Miura, T. Shishido, S. Hosokawa, K. Teramura, T. Tanaka, Strong metal-support interaction between Pt and SiO2 following high-temperature reduction: a catalytic interface for propane dehydrogenation, Chem. Commun. 53(51) (2017) 6937–6940. [8] J.C. Bricker, Advanced catalytic dehydrogenation technologies for production of olefins, Top. Catal. 55(19–20) (2012) 1309–1314. [9] J. Feng, M.S. Zhang, Y.Y. Yang, Dehydrogenation of propane on Pt or PtSn catalysts with Al2O3 or SBA-15 support, Chin. J. Chem. Eng. 22(11–12) (2014) 1232–1236. [10] Z.X. Lu, S.F. Ji, H. Liu, C.Y. Li, Preparation and characterization of Pt-Sn/SBA-15 catalysts and their catalytic performances for long chain alkane dehydrogenation, Chin. J. Chem. Eng. 16(5) (2008) 740–745. [11] L. Shi, G.M. Deng, W.C. Li, S. Miao, Q.N. Wang, W.P. Zhang, A.H. Lu, Al2O3 nanosheets rich in pentacoordinate Al(3+) ions stabilize Pt-Sn clusters for propane dehydrogenation, Angew. Chem. Int. Ed. Engl. 54(47) (2015) 13994–13998. [12] Y.R. Zhu, Z. An, H.Y. Song, X. Xiang, W.J. Yan, J. He, Lattice-confined Sn (IV/II) stabilizing raft-like Pt clusters: High selectivity and durability in propane dehydrogenation, ACS Catal. 7(10) (2017) 6973–6978. [13] Z.K. Xu, Y.Y. Yue, X.J. Bao, Z.L. Xie, H.B. Zhu, Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework, ACS Catal. 10(2020) 818–828. [14] Y.S. Wang, Z.P. Hu, X. Lv, L. Chen, Z.Y. Yuan, Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation, J. Catal. 385(2020) 61–69. [15] L.C. Liu, M. Lopez-Haro, C.W. Lopes, S. Rojas-Buzo, P. Concepcion, R. Manzorro, L. Simonelli, A. Sattler, P. Serna, J.J. Calvino, A. Corma, Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites, Nat. Catal. 3(8) (2020) 628–638. [16] L.C. Liu, M. Lopez-Haro, C.W. Lopes, D.M. Meira, P. Concepcion, J.J. Calvino, A. Corma, Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites, J. Catal. 391(2020) 11–24. [17] N. Wang, Q. Sun, R. Bai, X. Li, G. Guo, J. Yu, In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation, J. Am. Chem. Soc. 138(24) (2016) 7484–7487. [18] Q. Sun, N. Wang, Q. Fan, L. Zeng, A. Mayoral, S. Miao, R. Yang, Z. Jiang, W. Zhou, J. Zhang, T. Zhang, J. Xu, P. Zhang, J. Cheng, D.C. Yang, R. Jia, L. Li, Q. Zhang, Y. Wang, O. Terasaki, J. Yu, Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation, Angew. Chem. Int. Ed. Engl. 59(44) (2020) 19450–19459. [19] M. Farshadi, C. Falamaki, Ethylbenzene disproportionation and p-xylene selectivity enhancement in xylene isomerization using high crystallinity desilicated H-ZSM-5, Chin. J. Chem. Eng. 26(1) (2018) 116–126. [20] H.B. Zhu, D.H. Anjum, Q.X. Wang, E. Abou-Hamad, L. Emsley, H.L. Dong, P. Laveille, L.D. Li, A.K. Samal, J.M. Basset, Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation, J. Catal. 320(2014) 52–62. [21] Z.K. Xu, R. Xu, Y.Y. Yue, P. Yuan, X.J. Bao, E. Abou-Hamad, J.M. Basset, H.B. Zhu, Bimetallic Pt-Sn nanocluster from the hydrogenolysis of a well-defined surface compound consisting of [(AlO)Pt(COD)Me] and [(AlO)SnPh3] fragments for propane dehydrogenation, J. Catal. 374(2019) 391–400. [22] M. Ogura, S.Y. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, M. Matsukata, Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites, Appl. Catal. A: Gen. 219(1–2) (2001) 33–43. [23] S. Fathi, M. Sohrabi, C. Falamaki, Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions, Fuel 116(2014) 529–537. [24] G. Shi, X.Y. Lin, Y. Fan, X.J. Bao, Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading, J. Fuel Chem. Technol. 41(5) (2013) 589–600. (in Chinese) [25] K. Sadowska, K. Góra-Marek, M. Drozdek, P. Kuśtrowski, J. Datka, J. Martinez Triguero, F. Rey, Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide, Microporous Mesoporous Mater. 168(2013) 195–205. [26] X.H. Gao, Z.C. Tang, G.X. Lu, G.Z. Cao, D. Li, Z.G. Tan, Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication, Solid State Sci. 12(7) (2010) 1278–1282. [27] Y.L. Wang, W.M. Zhao, Z. Li, H. Wang, J.H. Wu, M. Li, Z.P. Hu, Y.S. Wang, J. Huang, Y.P. Zhao, Application of mesoporous ZSM-5 as a support for FischerTropsch cobalt catalysts, J. Porous Mater. 22(2) (2015) 339–345. [28] C.S. Mei, P.Y. Wen, Z.C. Liu, H.X. Liu, Y.D. Wang, W.M. Yang, Z.K. Xie, W.M. Hua, Z. Gao, Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5, J. Catal. 258(1) (2008) 243–249. [29] T. Suzuki, T. Okuhara, Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution, Microporous Mesoporous Mater. 43(1) (2001) 83–89. [30] S. Svelle, L. Sommer, K. Barbera, P.N.R. Vennestrøm, U. Olsbye, K.P. Lillerud, S. Bordiga, Y.H. Pan, P. Beato, How defects and crystal morphology control the effects of desilication, Catal. Today 168(1) (2011) 38–47. [31] Y.Q. Song, Y.L. Feng, F. Liu, C.L. Kang, X.L. Zhou, L.Y. Xu, G.X. Yu, Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance, J. Mol. Catal. A: Chem. 310(1–2) (2009) 130–137. [32] Y.W. Zhang, Y.M. Zhou, L. Huang, M.W. Xue, S.B. Zhang, Sn-modified ZSM-5 As support for platinum catalyst in propane dehydrogenation, Ind. Eng. Chem. Res. 50(13) (2011) 7896–7902. [33] S. Park, S.A. Wasileski, M.J. Weaver, Electrochemical infrared characterization of carbon-supported platinum nanoparticles: A benchmark structural comparison with single-crystal electrodes and high-nuclearity carbonyl clusters, J. Phys. Chem. B 105(40) (2001) 9719–9725. [34] K. Balakrishnan, J. Schwank, FTIR study of bimetallic Pt-Sn/Al2O3 catalysts, J. Catal. 138(2) (1992) 491–499. |