中国化学工程学报 ›› 2022, Vol. 48 ›› Issue (8): 1-11.DOI: 10.1016/j.cjche.2021.06.027
• • 下一篇
Feng Guo1,2, Chunli Shi1, Wei Sun1, Yanan Liu1, Xue Lin1, Weilong Shi3,4
收稿日期:
2021-03-09
修回日期:
2021-06-21
出版日期:
2022-08-28
发布日期:
2022-09-30
通讯作者:
Xue Lin,E-mail:jlsdlinxue@126.com;Weilong Shi,E-mail:shiwl@just.edu.cn
基金资助:
Feng Guo1,2, Chunli Shi1, Wei Sun1, Yanan Liu1, Xue Lin1, Weilong Shi3,4
Received:
2021-03-09
Revised:
2021-06-21
Online:
2022-08-28
Published:
2022-09-30
Contact:
Xue Lin,E-mail:jlsdlinxue@126.com;Weilong Shi,E-mail:shiwl@just.edu.cn
Supported by:
摘要: In this study, biochar (BC) derived from pomelo was prepared via a high-temperature calcination method to modify the graphitic carbon nitride (g-C3N4) to synthesize the BC/g-C3N4 composite for the degradation of the tetracycline (TC) antibiotic under visible light irradiation. The experimental results exhibit that the optimal feeding weight ratio of biochar/urea is 0.03:1 in BC/g-C3N4 composite could show the best photocatalytic activity with the degradation rate of tetracycline is 83% in 100?min irradiation. The improvement of photocatalytic activity is mainly attributed to the following two points: (i) the strong bonding with π-π stacking between BC and g-C3N4 make the photogenerated electrons of light-excited g-C3N4 transfer to BC, quickly and improve the separation efficiency of carriers; (ii) the introduction of BC reduces the distance for photogenerated electrons to migrate to the surface and increases the specific surface area for providing more active sites. This study provides a sustainable, economical and promising method for the synthesis of photocatalytic materials their application to wastewater treatment.
Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline[J]. 中国化学工程学报, 2022, 48(8): 1-11.
Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline[J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 1-11.
[1] J.L. Liu, B.Q. Zhou, H. Zhang, J. Ma, B. Mu, W.B. Zhang, A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution, Bioresour Technol 294 (2019) 122152.https://www.ncbi.nlm.nih.gov/pubmed/31557651/ [2] F. Guo, W.L. Shi, M.Y. Li, Y. Shi, H.B. Wen, 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline, Sep. Purif. Technol. 210 (2019) 608–615.http://dx.doi.org/10.1016/j.seppur.2018.08.055 [3] S.Q. Wu, H.Y. Hu, Y. Lin, J.L. Zhang, Y.H. Hu, Visible light photocatalytic degradation of tetracycline over TiO2, Chem. Eng. J. 382 (2020) 122842.http://dx.doi.org/10.1016/j.cej.2019.122842 [4] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci. 491 (2019) 88–94 [5] Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment, Appl. Catal. B: Environ. 262 (2020) 118308.http://dx.doi.org/10.1016/j.apcatb.2019.118308 [6] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770.http://dx.doi.org/10.1016/j.seppur.2019.115770 [7] W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes, Chem. Eng. J. 382 (2020) 122876.http://dx.doi.org/10.1016/j.cej.2019.122876 [8] H.B. Yu, D.Y. Wang, B. Zhao, Y. Lu, X.H. Wang, S.Y. Zhu, W.C. Qin, M.X. Huo, Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction, Sep. Purif. Technol. 237 (2020) 116365.http://dx.doi.org/10.1016/j.seppur.2019.116365 [9] Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal. B: Environ. 254 (2019) 541–550.http://dx.doi.org/10.1016/j.apcatb.2019.05.006 [10] R. Zhao, T.T. Ma, S. Zhao, H.Z. Rong, Y.Y. Tian, G.S. Zhu, Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water, Chem. Eng. J. 382 (2020) 122893.http://dx.doi.org/10.1016/j.cej.2019.122893 [11] F. Guo, W.L. Shi, H.B. Wang, H. Huang, Y. Liu, Z.H. Kang, Fabrication of a CuBi2O4/g-C3N4 p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation, Inorg. Chem. Front. 4 (10) (2017) 1714–1720.https://doi.org/10.1039/c7qi00402h [12] C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light, J. Alloy. Compd. 811 (2019) 151976.http://dx.doi.org/10.1016/j.jallcom.2019.151976 [13] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review, Carbohydr Polym 113 (2014) 115–130.https://www.ncbi.nlm.nih.gov/pubmed/25256466/ [14] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, N.S. Thomaidis, J. Xu, Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J Hazard Mater 323 (Pt A) (2017) 274–298.https://www.ncbi.nlm.nih.gov/pubmed/27143286/ [15] Y.W. Sun, X. Qi, R.Q. Li, Y.T. Xie, Q. Tang, B.X. Ren, Hydrothermal synthesis of 2D/2D BiOCl/g-C3N4 Z-scheme: For TC degradation and antimicrobial activity evaluation, Opt. Mater. 108 (2020) 110170.http://dx.doi.org/10.1016/j.optmat.2020.110170 [16] A. Gómez-Avilés, M. Pe?as-Garzón, J. Bedia, J.J. Rodriguez, C. Belver, C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen, Chem. Eng. J. 358 (2019) 1574–1582.http://dx.doi.org/10.1016/j.cej.2018.10.154 [17] F. Liu, T.P. Nguyen, Q. Wang, F. Massuyeau, Y. Dan, L. Jiang, Construction of Z-scheme g-C3N4/Ag/P3HT heterojunction for enhanced visible-light photocatalytic degradation of tetracycline (TC) and methyl orange (MO), Appl. Surf. Sci. 496 (2019) 143653.http://dx.doi.org/10.1016/j.apsusc.2019.143653 [18] C. Gao, J. Wang, H.X. Xu, Y.J. Xiong, Coordination chemistry in the design of heterogeneous photocatalysts, Chem Soc Rev 46 (10) (2017) 2799–2823.https://www.ncbi.nlm.nih.gov/pubmed/28368055/ [19] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: Mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518.http://dx.doi.org/10.1016/j.seppur.2020.117518 [20] A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Photocatalytic CO2 reduction by TiO2 and related titanium containing solids, Energy Environ. Sci. 5 (11) (2012) 9217.https://doi.org/10.1039/c2ee21948d [21] W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity, Beilstein J Nanotechnol 10 (2019) 1360–1367.https://www.ncbi.nlm.nih.gov/pubmed/31355104/ [22] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, C. Yan, Three-dimensional Z-Scheme Ag3PO4/Co3(PO4)2@Ag heterojunction for improved visible-light photocatalytic degradation activity of tetracycline, J. Alloy. Compd. 818 (2020) 152883.http://dx.doi.org/10.1016/j.jallcom.2019.152883 [23] C.R. Chen, H.Y. Zeng, M.Y. Yi, G.F. Xiao, S. Xu, S.G. Shen, B. Feng, In-situ growth of Ag3PO4 on calcined Zn-Al layered double hydroxides for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation and toxicity assessment, Appl. Catal. B: Environ. 252 (2019) 47–54.http://dx.doi.org/10.1016/j.apcatb.2019.03.083 [24] H.G. Yu, L.L. Xu, P. Wang, X.F. Wang, J.G. Yu, Enhanced photoinduced stability and photocatalytic activity of AgBr photocatalyst by surface modification of Fe(III) cocatalyst, Appl. Catal. B: Environ. 144 (2014) 75–82.http://dx.doi.org/10.1016/j.apcatb.2013.06.023 [25] N. Belhouchet, B. Hamdi, H. Chenchouni, Y. Bessekhouad, Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites, J. Photochem. Photobiol. A: Chem. 372 (2019) 196–205.http://dx.doi.org/10.1016/j.jphotochem.2018.12.016 [26] S. Ghayempour, M. Montazer, M. Mahmoudi Rad, Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties, Carbohydr Polym 136 (2016) 232–241.https://www.ncbi.nlm.nih.gov/pubmed/26572351/ [27] X.F. Lei, T.H. Xu, W.F. Yao, Q. Wu, R.J. Zou, Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracycline, J. Taiwan Inst. Chem. Eng. 106 (2020) 148–158.http://dx.doi.org/10.1016/j.jtice.2019.10.023 [28] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212 (2019) 142–149.http://dx.doi.org/10.1016/j.seppur.2018.11.028 [29] J.M. Wang, J. Luo, D. Liu, S.T. Chen, T.Y. Peng, One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production, Appl. Catal. B: Environ. 241 (2019) 130–140.http://dx.doi.org/10.1016/j.apcatb.2018.09.033 [30] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.J. Shi, C. Yan, Constructing 3D sub-micrometer CoO octahedrons packed with layered MoS2 shell for boosting photocatalytic overall water splitting activity, Appl. Surf. Sci. 473 (2019) 928–933.http://dx.doi.org/10.1016/j.apsusc.2018.12.247 [31] X.L. Miao, X.P. Shen, J.J. Wu, Z.Y. Ji, J.H. Wang, L.R. Kong, M.M. Liu, C.S. Song, Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalytic activity, Appl. Catal. A: Gen. 539 (2017) 104–113.http://dx.doi.org/10.1016/j.apcata.2017.04.009 [32] P. Suyana, P. Ganguly, B.N. Nair, A.P. Mohamed, K.G.K. Warrier, U.S. Hareesh, Co3O4–C3N4 p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation, Environ. Sci.: Nano 4 (1) (2017) 212–221.https://doi.org/10.1039/c6en00410e [33] X.P. Song, D. Tang, Y.F. Chen, M.Y. Yin, Q. Yang, Z.Q. Chen, L.M. Zhou, A facile and green combined strategy for improving photocatalytic activity of carbon nitride, ACS Omega 4 (4) (2019) 6114–6125.https://www.ncbi.nlm.nih.gov/pubmed/31459757/ [34] S. Thaweesak, M.Q. Lyu, P. Peerakiatkhajohn, T. Butburee, B. Luo, H.J. Chen, L.Z. Wang, Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution, Appl. Catal. B: Environ. 202 (2017) 184–190.http://dx.doi.org/10.1016/j.apcatb.2016.09.022 [35] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, C. Yan, F. Guo, Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light, Chem. Eng. J. 382 (2020) 122960.http://dx.doi.org/10.1016/j.cej.2019.122960 [36] W.L. Shi, C. Liu, M.Y. Li, X. Lin, F. Guo, J.Y. Shi, Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity, J Hazard Mater 389 (2020) 121907.https://www.ncbi.nlm.nih.gov/pubmed/31879109/ [37] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N, N-dimethylformamide, Inorg. Chem. Front. 7 (8) (2020) 1770–1779.https://doi.org/10.1039/d0qi00117a [38] Z.Q. Liang, X.F. Meng, Y.J. Xue, X.Y. Chen, Y.L. Zhou, X.L. Zhang, H.Z. Cui, J. Tian, Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production, J Colloid Interface Sci 598 (2021) 172–180.https://www.ncbi.nlm.nih.gov/pubmed/33901844/ [39] X. Li, X.R. Qian, X.H. An, J.W. Huang, Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde, Appl. Surf. Sci. 487 (2019) 1262–1270.http://dx.doi.org/10.1016/j.apsusc.2019.05.195 [40] A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants- Synergism of adsorption, photocatalysis & photo-ozonation, J. Clean. Prod. 165 (2017) 431–451.http://dx.doi.org/10.1016/j.jclepro.2017.07.117 [41] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, X. Lin, A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen, Int. J. Hydrog. Energy 45 (55) (2020) 30521–30532.http://dx.doi.org/10.1016/j.ijhydene.2020.08.080 [42] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844.http://dx.doi.org/10.1016/j.cej.2020.126844 [43] Z.Q. Liang, S.R. Yang, X.Y. Wang, H.Z. Cui, X.Z. Wang, J. Tian, The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes, Appl. Catal. B: Environ. 274 (2020) 119114.http://dx.doi.org/10.1016/j.apcatb.2020.119114 [44] Z.Q. Liang, Y.J. Xue, X.Y. Wang, Y.L. Zhou, X.L. Zhang, H.Z. Cui, G.Q. Cheng, J. Tian, Co doped MoS2 as cocatalyst considerably improved photocatalytic hydrogen evolution of g-C3N4 in an alkalescent environment, Chem. Eng. J. 421 (2021) 130016.http://dx.doi.org/10.1016/j.cej.2021.130016 [45] G.M. Li, B. Wang, J. Zhang, R. Wang, H.L. Liu, Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline, Appl. Surf. Sci. 478 (2019) 1056–1064.http://dx.doi.org/10.1016/j.apsusc.2019.02.035 [46] F. Guo, X.L. Huang, Z.H. Chen, L.W. Cao, X.F. Cheng, L.Z. Chen, W.L. Shi, Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics, Sep. Purif. Technol. 265 (2021) 118477.http://dx.doi.org/10.1016/j.seppur.2021.118477 [47] W.Q. Zhang, W.L. Shi, H.R. Sun, Y.X. Shi, H. Luo, S.R. Jing, Y.Q. Fan, F. Guo, C.Y. Lu, Fabrication of ternary CoO/g-C 3 N4/Co 3 O4 nanocomposite with p-n-p type heterojunction for boosted visible-light photocatalytic performance, J. Chem. Technol. Biotechnol. 96 (7) (2021) 1854–1863.https://doi.org/10.1002/jctb.6703 [48] Y.B. Li, H.M. Zhang, P.R. Liu, D. Wang, Y. Li, H.J. Zhao, Cross-linked g-C3 N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity, Small 9 (19) (2013) 3336–3344.https://www.ncbi.nlm.nih.gov/pubmed/23630157/ [49] X.G. Ma, Y. Wei, Z. Wei, H. He, C.Y. Huang, Y.F. Zhu, Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity, J. Colloid Interface Sci. 508 (2017) 274–281.http://dx.doi.org/10.1016/j.jcis.2017.08.037 [50] S. Yang, C. Liu, J.B. Wang, X. Lin, Y.Z. Hong, F. Guo, J.Y. Shi, Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites, J. Solid State Chem. 287 (2020) 121347.http://dx.doi.org/10.1016/j.jssc.2020.121347 [51] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226–2240.http://dx.doi.org/10.1007/s10853-020-05436-2 [52] L. Pi, R. Jiang, W.C. Zhou, H. Zhu, W. Xiao, D.H. Wang, X.H. Mao, G-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants, Appl. Surf. Sci. 358 (2015) 231–239.http://dx.doi.org/10.1016/j.apsusc.2015.08.176 [53] D.L. Huang, H. Luo, C. Zhang, G.M. Zeng, C. Lai, M. Cheng, R.Z. Wang, R. Deng, W.J. Xue, X.M. Gong, X.Y. Guo, T. Li, Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: Insight into the influences on Fenton-like process, Chem. Eng. J. 361 (2019) 353–363.http://dx.doi.org/10.1016/j.cej.2018.12.098 [54] P.P. Wang, F.Q. Dong, M.X. Liu, H.C. He, T.T. Huo, L. Zhou, W. Zhang, Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe2O3/TiO2 electrode, Environ Sci Pollut Res Int 25 (23) (2018) 22455–22463.https://www.ncbi.nlm.nih.gov/pubmed/29460249/ [55] P.P. Zuo, J.Q. Duan, H.L. Fan, S.J. Qu, W.Z. Shen, Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation, Appl. Surf. Sci. 435 (2018) 1020–1028.http://dx.doi.org/10.1016/j.apsusc.2017.11.179 [56] H. Zheng, Q.Y. Sun, Y.H. Li, Q.J. Du, Biosorbents prepared from pomelo peel by hydrothermal technique and its adsorption properties for Congo red, Mater. Res. Express 7 (4) (2020) 045505.https://doi.org/10.1088/2053-1591/ab8a83 [57] H. Zhang, F.Q. Yu, W.P. Kang, Q. Shen, Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries, Carbon 95 (2015) 354–363.http://dx.doi.org/10.1016/j.carbon.2015.08.050 [58] W.C. Wang, L.H. Zhang, Z. Li, S.H. Zhang, C. Wang, Z. Wang, A nanoporous carbon material derived from pomelo peels as a fiber coating for solid-phase microextraction, RSC Adv. 6 (115) (2016) 113951–113958.https://doi.org/10.1039/c6ra24225a [59] W. Wang, P. Xu, M. Chen, G. Zeng, C. Zhang, C. Zhou, Y. Yang, D. Huang, C. Lai, M. Cheng, L. Hu, W. Xiong, H. Guo, M. Zhou, Alkali Metal-Assisted Synthesis of Graphite Carbon Nitride with Tunable Band-Gap for Enhanced Visible-Light-Driven Photocatalytic Performance, ACS Sustain Chem Eng, 6 (2018) 15503-15516 [60] X.X. Zhao, Z.Y. Lu, R. Ji, M.H. Zhang, C.W. Yi, Y.S. Yan, Biomass carbon modified Z-scheme g-C3N4/Co3O4 heterojunction with enhanced visible-light photocatalytic activity, Catal. Commun. 112 (2018) 49–52.http://dx.doi.org/10.1016/j.catcom.2018.04.003 [61] H.N. Che, G.B. Che, P.J. Zhou, C.B. Liu, H.J. Dong, Yeast-derived carbon sphere as a bridge of charge carriers towards to enhanced photocatalytic activity of 2D/2D Cu2WS4/g-C3N4 heterojunction, J Colloid Interface Sci 546 (2019) 262–275.https://www.ncbi.nlm.nih.gov/pubmed/30927592/ [62] X.F. Zhu, F. Guo, J.J. Pan, H.R. Sun, L.L. Gao, J.X. Deng, X.Y. Zhu, W.L. Shi, Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core-shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight, J. Mater. Sci. 56 (6) (2021) 4366–4379.http://dx.doi.org/10.1007/s10853-020-05542-1 [63] W.L. Shi, K.K. Shu, X.L. Huang, H.J. Ren, M.Y. Li, F.Y. Chen, F. Guo, Enhancement of visible-light photocatalytic degradation performance over nitrogen-deficient g-C 3 N4/KNbO 3 heterojunction photocatalyst, J. Chem. Technol. Biotechnol. 95 (5) (2020) 1476–1486.https://doi.org/10.1002/jctb.6338 [64] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25 (17) (2009) 10397–10401.https://www.ncbi.nlm.nih.gov/pubmed/19705905/ [65] Y.Z. Hong, L.Y. Wang, E.L. Liu, J.H. Chen, Z.G. Wang, S.Q. Zhang, X. Lin, X.X. Duan, J.Y. Shi, A curly architectured graphitic carbon nitride (g-C3N4) towards efficient visible-light photocatalytic H2 evolution, Inorg. Chem. Front. 7 (2) (2020) 347–355.https://doi.org/10.1039/c9qi01128e [66] A. Kumar, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, I. Hira, T. Ahamad, A.A. Ghfar, F.J. Stadler, Visible photodegradation of ibuprofen and 2, 4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar, J Environ Manage 231 (2019) 1164–1175.https://www.ncbi.nlm.nih.gov/pubmed/30602241/ [67] L.Y. Wang, Y.Z. Hong, E.L. Liu, X.X. Duan, X. Lin, J.Y. Shi, A bottom-up acidification strategy engineered ultrathin g-C3N4 nanosheets towards boosting photocatalytic hydrogen evolution, Carbon 163 (2020) 234–243.http://dx.doi.org/10.1016/j.carbon.2020.03.031 [68] G.H. Liu, M.L. Liao, Z.H. Zhang, H.Y. Wang, D.H. Chen, Y.J. Feng, Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes, Sep. Purif. Technol. 244 (2020) 116618.http://dx.doi.org/10.1016/j.seppur.2020.116618 [69] L. Sun, S.G. Wan, W.S. Luo, Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies, Bioresour Technol 140 (2013) 406–413.https://www.ncbi.nlm.nih.gov/pubmed/23714096/ [70] L.L. Hu, Y.H. Liao, D.H. Xia, F. Peng, L. Tan, S.Y. Hu, C.S. Zheng, X.L. Lu, C. He, D. Shu, Engineered photocatalytic fuel cell with oxygen vacancies-rich rGO/BiO1?xI as photoanode and biomass-derived N-doped carbon as cathode: Promotion of reactive oxygen species production via Fe2+/Fe3+ redox, Chem. Eng. J. 385 (2020) 123824.http://dx.doi.org/10.1016/j.cej.2019.123824 [71] S.J. Ye, M. Yan, X.F. Tan, J. Liang, G.M. Zeng, H.P. Wu, B. Song, C.Y. Zhou, Y. Yang, H. Wang, Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light, Appl. Catal. B: Environ. 250 (2019) 78–88.http://dx.doi.org/10.1016/j.apcatb.2019.03.004 [72] S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma, Z.Y. Fang, R. Vajtai, X.C. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv Mater 25 (17) (2013) 2452–2456.https://www.ncbi.nlm.nih.gov/pubmed/23450777/ [73] J.W. Fu, B.C. Zhu, C.J. Jiang, B. Cheng, W. You, J.G. Yu, Hierarchical porous O-doped g-C3 N4 with enhanced photocatalytic CO2 reduction activity, Small 13 (15) (2017). DOI:10.1002/smll.201603938.https://www.ncbi.nlm.nih.gov/pubmed/28160415/ [74] B. He, M. Feng, X.Y. Chen, D.W. Zhao, J. Sun, One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis, Appl. Surf. Sci. 527 (2020) 146737.http://dx.doi.org/10.1016/j.apsusc.2020.146737 [75] W. Ho, Z.Z. Zhang, W. Lin, S.P. Huang, X.W. Zhang, X.X. Wang, Y. Huang, Copolymerization with 2, 4, 6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4, ACS Appl Mater Interfaces 7 (9) (2015) 5497–5505.https://www.ncbi.nlm.nih.gov/pubmed/25706325/ [76] W.K. Wang, H.M. Zhang, S.B. Zhang, Y.Y. Liu, G.Z. Wang, C.H. Sun, H.J. Zhao, Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction, Angew Chem Int Ed Engl 58 (46) (2019) 16644–16650.https://www.ncbi.nlm.nih.gov/pubmed/31497911/ [77] R.F. Nie, M. Miao, W.C. Du, J.J. Shi, Y.C. Liu, Z.Y. Hou, Selective hydrogenation of CC bond over N-doped reduced graphene oxides supported Pd catalyst, Appl. Catal. B: Environ. 180 (2016) 607–613.http://dx.doi.org/10.1016/j.apcatb.2015.07.015 [78] X.M. Li, X. Sun, L. Zhang, S.M. Sun, W.Z. Wang, Efficient photocatalytic fixation of N2by KOH-treated g-C3N4, J. Mater. Chem. A 6 (7) (2018) 3005–3011.https://doi.org/10.1039/c7ta09762j [79] L.H. Zhang, Z.Y. Jin, S.L. Huang, X.Y. Huang, B.H. Xu, L. Hu, H.Z. Cui, S.C. Ruan, Y.J. Zeng, Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution, Appl. Catal. B: Environ. 246 (2019) 61–71.http://dx.doi.org/10.1016/j.apcatb.2019.01.040 [80] Y.L. Zheng, Y.C. Yang, Y. Zhang, W.X. Zou, Y.D. Luo, L. Dong, B. Gao, Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation, Biochar 1 (1) (2019) 89–96.http://dx.doi.org/10.1007/s42773-019-00007-4 [81] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schl?gl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (41) (2008) 4893.https://doi.org/10.1039/b800274f [82] C. Chang, Y. Fu, M. Hu, C.Y. Wang, G.Q. Shan, L.Y. Zhu, Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation, Appl. Catal. B: Environ. 142-143 (2013) 553–560.http://dx.doi.org/10.1016/j.apcatb.2013.05.044 [83] Z. Zhu, C.C. Ma, K.S. Yu, Z.Y. Lu, Z. Liu, P.W. Huo, X. Tang, Y.S. Yan, Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-Mercaptobenzothiazole, Appl. Catal. B: Environ. 268 (2020) 118432.http://dx.doi.org/10.1016/j.apcatb.2019.118432 [84] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215–11223.https://doi.org/10.1039/d0nj02268c [85] Y.N. Liu, C. Liu, C.L. Shi, W. Sun, X. Lin, W.L. Shi, Y.Z. Hong, Carbon-based quantum dots (QDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification, J. Alloy. Compd. 881 (2021) 160437.http://dx.doi.org/10.1016/j.jallcom.2021.160437 [86] C.Y. Zhou, D.L. Huang, P. Xu, G.M. Zeng, J.H. Huang, T.Z. Shi, C. Lai, C. Zhang, M. Cheng, Y. Lu, A. Duan, W.P. Xiong, M. Zhou, Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer, Chem. Eng. J. 370 (2019) 1077–1086.http://dx.doi.org/10.1016/j.cej.2019.03.279 [87] C. Zhao, Z.Z. Liao, W. Liu, F.Y. Liu, J.Y. Ye, J.L. Liang, Y.Y. Li, Carbon quantum dots modified tubular g-C3N4 with enhanced photocatalytic activity for carbamazepine elimination: Mechanisms, degradation pathway and DFT calculation, J Hazard Mater 381 (2020) 120957.https://www.ncbi.nlm.nih.gov/pubmed/31421549/ [88] M. Shen, L.X. Zhang, M. Wang, J.J. Tian, X.X. Jin, L.M. Guo, L.Z. Wang, J.L. Shi, Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing, J. Mater. Chem. A 7 (4) (2019) 1556–1563.https://doi.org/10.1039/c8ta09302d [89] L.J. Wang, R.Q. Guan, Y.F. Qi, F.L. Zhang, P. Li, J.M. Wang, P. Qu, G. Zhou, W.L. Shi, Constructing Zn-P charge transfer bridge over ZnFe2O4-black phosphorus 3D microcavity structure: Efficient photocatalyst design in visible-near-infrared region, J Colloid Interface Sci 600 (2021) 463–472.https://www.ncbi.nlm.nih.gov/pubmed/34030006/ [90] S.H. Wang, L. Zhao, W. Huang, H. Zhao, J.Y. Chen, Q. Cai, X. Jiang, C.Y. Lu, W.L. Shi, Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline, Mater. Res. Bull. 135 (2021) 111161.http://dx.doi.org/10.1016/j.materresbull.2020.111161 [91] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C 3 N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129–2138.https://doi.org/10.1002/jctb.6398 [92] O. Norouzi, A. Kheradmand, Y.J. Jiang, F. Di Maria, O. Masek, Superior activity of metal oxide biochar composite in hydrogen evolution under artificial solar irradiation: a promising alternative to conventional metal-based photocatalysts, Int. J. Hydrog. Energy 44 (54) (2019) 28698–28708.http://dx.doi.org/10.1016/j.ijhydene.2019.09.119 [93] J. Yang, Y.J. Liang, K. Li, G. Yang, S. Yin, One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability, Appl. Catal. B: Environ. 250 (2019) 17–30.http://dx.doi.org/10.1016/j.apcatb.2019.03.017 [94] F. Deng, L.N. Zhao, X.B. Luo, S.L. Luo, D.D. Dionysiou, Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater, Chem. Eng. J. 333 (2018) 423–433.http://dx.doi.org/10.1016/j.cej.2017.09.022 [95] S.D. Zhao, J.R. Chen, Y.F. Liu, Y. Jiang, C.G. Jiang, Z.L. Yin, Y.G. Xiao, S.S. Cao, Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability, Chem. Eng. J. 367 (2019) 249–259.http://dx.doi.org/10.1016/j.cej.2019.02.123 [96] Y. Hu, K. Chen, Y.L. Li, J.Y. He, K.S. Zhang, T. Liu, W. Xu, X.J. Huang, L.T. Kong, J.H. Liu, Morphology-tunable WMoO nanowire catalysts for the extremely efficient elimination of tetracycline: kinetics, mechanisms and intermediates, Nanoscale 11 (3) (2019) 1047–1057.https://www.ncbi.nlm.nih.gov/pubmed/30569932/ [97] Z.J. Xie, Y.P. Feng, F.L. Wang, D.N. Chen, Q.X. Zhang, Y.Q. Zeng, W. Lv, G.G. Liu, Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline, Appl. Catal. B: Environ. 229 (2018) 96–104.http://dx.doi.org/10.1016/j.apcatb.2018.02.011 [98] Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B: Environ. 180 (2016) 663–673.http://dx.doi.org/10.1016/j.apcatb.2015.06.057 [99] F. Guo, H. Sun, X. Huang, W. Shi, C. Yan, Fabrication of TiO2/high-crystalline g-C3N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation, J Chem Technol Biotechnol, (2020) 2684-2693 [100] X.Y. Wang, M.Y. Lu, J. Ma, P. Ning, L. Che, Synthesis of K-doped g-C3N4/carbon microsphere@graphene composite with high surface area for enhanced adsorption and visible photocatalytic degradation of tetracycline, J. Taiwan Inst. Chem. Eng. 91 (2018) 609–622.http://dx.doi.org/10.1016/j.jtice.2018.06.019 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||