[1] S.C. Ma, J.J. Yao, L. Gao, X.Y. Ma, Y. Zhao, Experimental study on removals of SO2 and NOx using adsorption of activated carbon/microwave desorption, J Air Waste Manag. Assoc. 62 (9) (2012) 1012–1021 [2] K.Q. Jiang, H. Yu, L.H. Chen, M.X. Fang, M. Azzi, A. Cottrell, K.K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology, Appl. Energy 260 (2020) 114316 [3] J.M. Ou, J. Meng, J.Y. Zheng, Z.F. Mi, Y.H. Bian, X. Yu, J.R. Liu, D.B. Guan, Demand-driven air pollutant emissions for a fast-developing region in China, Appl. Energy 204 (2017) 131–142 [4] S. Wu, W.L. Wang, C.Z. Ren, X.L. Yao, Y.G. Yao, Q.S. Zhang, Z.F. Li, Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source, Constr. Build. Mater. 228 (2019) 116676 [5] F.H. Yang, R.T. Yang, Ab initio molecular orbital study of the mechanism of SO2 oxidation catalyzed by carbon, Carbon 41 (11) (2003) 2149–2158 [6] J.R. PliegoJr, S.M. Resende, E. Humeres, Chemisorption of SO2 on graphite surface: A theoretical ab initio and ideal lattice gas model study, Chem. Phys. 314 (1–3) (2005) 127–133 [7] E. Raymundo-Pi?ero, D. Cazorla-Amorós, A. Linares-Solano, Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres, Carbon 39 (2) (2001) 231–242 [8] E. Richter, Modelling of thermal desorption of active coke loaded with sulphuric acid and ammonium sulphate, Chem. Eng. Technol. 13 (1) (1990) 101–112 [9] F. Sun, J.H. Gao, X. Liu, X.F. Tang, S.H. Wu, A systematic investigation of SO2 removal dynamics by coal-based activated cokes: The synergic enhancement effect of hierarchical pore configuration and gas components, Appl. Surf. Sci. 357 (2015) 1895–1901 [10] X.X. Pi, F. Sun, J.H. Gao, Z.B. Qu, A.N. Wang, Z.P. Qie, L.J. Wang, H. Liu, A new insight into the SO2 adsorption behavior of oxidized carbon materials using model adsorbents and DFT calculations, Phys. Chem. Chem. Phys. 21 (18) (2019) 9181–9188 [11] Z.B. Qu, F. Sun, J.H. Gao, X.X. Pi, Z.P. Qie, G.B. Zhao, A new insight into SO2 low-temperature catalytic oxidation in porous carbon materials: Non-dissociated O2 molecule as oxidant, Catal. Sci. Technol. 9 (16) (2019) 4327–4338 [12] B. Rubio, M.T. Izquierdo, Coal fly ash based carbons for SO2 removal from flue gases, Waste Manag. 30 (7) (2010) 1341–1347 [13] Y.S. Wang, L. Zhang, L. Zhang, M.M. Qiang, Y.X. Sun, X.N. Xi, Effects of CuO- base metal supporting catalyst on flue gas desulfurization performance, Ind. Saf. Environ. Prot. (2015) 41(8)100–102. (in Chinese) [14] J.H. Qi, K.H. Han, Q. Wang, J. Gao, Carbonization of biomass: Effect of additives on alkali metals residue, SO2 and NO emission of chars during combustion, Energy 130 (2017) 560–569 [15] K.X. Li, L.C. Ling, L. Liu, B.J. Zhang, Z.Y. Liu, Desulfurization activity of activated carbon fiber modified by heat treatment, Chin. J. Catal. (03) (2000) 71-75. (in Chinese) [16] X.X. Pi, F. Sun, J.H. Gao, Y.W. Zhu, L.J. Wang, Z.B. Qu, H. Liu, G.B. Zhao, Microwave irradiation induced high-efficiency regeneration for desulfurized activated coke: A comparative study with conventional thermal regeneration, Energy Fuels 31 (9) (2017) 9693–9702 [17] F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M.J. Sanchez-Montero, C. Izquierdo, Regeneration of carbonaceous adsorbents. Part I: Thermal regeneration, Microporous Mesoporous Mater. 202 (2015) 259–276 [18] F. Sun, J.H. Gao, Y.W. Zhu, Y.K. Qin, Mechanism of SO2 adsorption and desorption on commercial activated coke, Korean J. Chem. Eng. 28 (11) (2011) 2218–2225 [19] S.J. Liu, X.N. Yu, G.X. Lin, R.Y. Qu, C.H. Zheng, X. Gao, Insights into the effect of adsorption–desorption cycles on SO2 removal over an activated carbon, Aerosol Air Qual. Res. 19 (2) (2019) 411–421 [20] G.L. Song, S.B. Yang, W.J. Song, X.B. Qi, Release and transformation behaviors of sodium during combustion of high alkali residual carbon, Appl. Therm. Eng. 122 (2017) 285–296 [21] B. Li, J.M.Xue, Y.Y. Xu, H.L. Wang, C.Y. Ma, J.M. Chen. Equilibrium, kinetics and thermodynamics of SO2 adsorption activated carbon, J. China Coal Soc.10 (2014) 2100-2106. (in Chinese) [22] A.M. Kisiela, K.M. Czajka, W. Moroń, W. Rybak, C. Andryjowicz, Unburned carbon from lignite fly ash as an adsorbent for SO2 removal, Energy 116 (2016) 1454–1463 [23] Z. Zhang, T. Wang, L. Ke, X.Q. Zhao, C.Y. Ma, Powder-activated semicokes prepared from coal fast pyrolysis: Influence of oxygen and steam atmosphere on pore structure, Energy Fuels 30 (2) (2016) 896–903 [24] J.P. Fu, B.X. Zhou, Z. Zhang, T. Wang, X.X. Cheng, L.T. Lin, C.Y. Ma, One-step rapid pyrolysis activation method to prepare nanostructured activated coke powder, Fuel 262 (2020) 116514 [25] R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123 (9) (2001) 2058–2059 [26] Y.Y. Guo, Y.R. Li, T.Y. Zhu, M. Ye, Investigation of SO2 and NO adsorption species on activated carbon and the mechanism of NO promotion effect on SO2, Fuel 143 (2015) 536–542 [27] Y.L. Xu, B.L. Chen, Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis, Bioresour. Technol. 146 (2013) 485–493 [28] E. Müsellim, M.H. Tahir, M.S. Ahmad, S. Ceylan, Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis, Appl. Therm. Eng. 137 (2018) 54–61 [29] A.A.D. Maia, L.C. de Morais, Kinetic parameters of red pepper waste as biomass to solid biofuel, Bioresour. Technol. 204 (2016) 157–163 [30] E. Cetin, B. Moghtaderi, R. Gupta, T.F. Wall, Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars, Fuel 83 (16) (2004) 2139–2150 [31] J. Chen, D.D. Fang, F. Duan, Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor, Appl. Energy 218 (2018) 54–65 [32] B.X. Zhou, T. Wang, C. Li, J.P. Fu, Z. Zhang, Z.L. Song, C.Y. Ma, Multi-objective optimization of the preparation parameters of the powdered activated coke for SO2 adsorption using response surface methodology, J. Anal. Appl. Pyrolysis 146 (2020) 104776 [33] Z. Zhang, T. Wang, X.H. Pan, B.X. Zhou, C.Y. Ma, Effect of temperature on pore structure evolution during powder-activated coke preparation by flue gas activation, J. China Coal Soc. 44 (11) (2019) 3564-3570. (in Chinese) [34] J.J. Li, N. Kobayashi, Y.Q. Hu, The activated coke preparation for SO2 adsorption by using flue gas from coal power plant, Chem. Eng. Process.: Process. Intensif. 47 (1) (2008) 118–127 [35] S.G. Herawan, M.S. Hadi, M.R. Ayob, A Putra, Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature, Scientific World J. 2013 (2013) 624865 [36] N.R. Candido, M.J. Prauchner, A.D.O. Vilela, V.M.D. Pasa, The use of gases generated from eucalyptus carbonization as activating agent to produce activated carbon: An integrated process, J. Environ. Chem. Eng. 8 (4) (2020) 103925 [37] J.F. González, S. Román, C.M. González-García, J.M.V. Nabais, A.L. Ortiz, Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation, Ind. Eng. Chem. Res. 48 (16) (2009) 7474–7481 [38] Y.X. Guo, Z.Y. Liu, Q.Y. Liu, Z.G. Huang, Regeneration of a vanadium pentoxide supported activated coke catalyst-sorbent used in simultaneous sulfur dioxide and nitric oxide removal from flue gas: Effect of ammonia, Catal. Today 131 (1–4) (2008) 322–329 [39] S. Ding, Y. Li, T. Zhu, Y. Guo, Regeneration performance and carbon consumption of semi-coke and activated coke for SO? and NO removal, J. Environ. Sci. (China) 34 (2015) 37–43 [40] L.Q. Zhang, H.T. Jiang, B. Li, L. Chen, C.Y. Ma, Desorption mechanism and kinetics of SO2 loaded activatedcarbon by microwave irradiation, J. China Coal Soc. 37 (11) (2012) 1920-1924. (in Chinese) [41] D.H. Zhang, C.Y. Song, L. Zhang, Q.Y. Gu, Effect of approach to adiabatic saturation temperature on flue gas desulfurization by PAN-ACF, J. Univ. Sci. Technol. Beijing, (02) (2012) 196-201. (in Chinese) [42] H. Zhang, Study on adsorption of sulfur dioxide over zeolites, M.S. Thesis, Harbin Institute of Technology, China, 2008. (in Chinese). [43] D.D. Do, H.D. Do, A model for water adsorption in activated carbon, Carbon 38 (5) (2000) 767–773 [44] K. Kaneko, Y. Hanzawa, T. Iiyama, T. Kanda, T. Suzuki, Cluster-mediated water adsorption on carbon nanopores, Adsorption 5 (1) (1999) 7–13 [45] H.L. Chiang, J.H. Tsai, C.L. Tsai, Y.C. Hsu, Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas, Sep. Sci. Technol. 35 (6) (2000) 903–918 [46] G.S. Szymanski, Z. Karpinski, S. Biniak, A. Swi?tkowski, The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon, Carbon 40 (14) (2002) 2627–2639 [47] J.M. Rosas, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, Kinetic study of SO2 removal over lignin-based activated carbon, Chem. Eng. J. 307 (2017) 707–721 [48] Bashkova S, Bagreev A, Locke DC, Bandosz TJ, Adsorption of SO2 on sewage sludge-derived materials, Environ. Sci. Technol. 35 (15) (2001) 3263–3269 [49] S.C. Turmanova, S.D. Genieva, A.S. Dimitrova, L.T. Vlaev, Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites, Express Polym. Lett. 2 (2) (2008) 133–146 [50] Y. He, X.B. Zhang, W. Chen, B. Zhang, Z. Zhang, Experimental study and thermal analysis of the combustion characteristics of powder-activated cokes, Powder Technol. 356 (2019) 640–648 [51] S.M. Yang, W.Q. Tao, Heat Transfer, China Higher Education Press, Beijing, 2006, pp. 563-564. (in Chinese) [52] K.S. Hong, E.H. Wei, Mathematical model of common physical property data in sulfuric acid process calculation, Sulphuric Acid Ind. 4 (1986) 59-64. (in Chinese) |