[1] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, A novel and energy-efficient coaxial mixer for agitation of non-Newtonian fluids possessing yield stress, Chem. Eng. Sci. 101 (2013) 642-654.http://dx.doi.org/10.1016/j.ces.2013.07.027 [2] K.V. Riet, J.M. Smith, The trailing vortex system produced by Rushton turbine agitators, Chem. Eng. Sci. 30 (9) (1975) 1093-1105.http://dx.doi.org/10.1016/0009-2509(75)87012-6 [3] J.M.T. Vasconcelos, S.C.P. Orvalho, A.M.A.F. Rodrigues, S.S. Alves, Effect of blade shape on the performance of six-bladed disk turbine impellers, Ind. Eng. Chem. Res. 39 (1) (2000) 203-213.https://doi.org/10.1021/ie9904145 [4] T.T. Devi, B. Kumar, Comparison of flow patterns of dual rushton and CD-6 impellers, Theor. Found. Chem. Eng. 47 (4) (2013) 344-355.https://doi.org/10.1134/s0040579513040210 [5] A. Bakker, Impeller assembly with asymmetric concave blades, US Pat., 5791780 (1998). [6] E. Galindo, A.W. Nienow, Performance of the scaba 6SRGT agitator in mixing of simulated xanthan gum broths, Chem. Eng. Technol. 16 (2) (1993) 102-108.https://doi.org/10.1002/ceat.270160206 [7] Z.Y. Zheng, D.D. Sun, J. Li, X.B. Zhan, M.J. Gao, Improving oxygen transfer efficiency by developing a novel energy-saving impeller, Chem. Eng. Res. Des. 130 (2018) 199-207.http://dx.doi.org/10.1016/j.cherd.2017.12.021 [8] Z.P. Li, G. Song, Y.Y. Bao, Z.M. Gao, Stereo-PIV experiments and large eddy simulations of flow fields in stirred tanks with Rushton and curved-Blade turbines, AIChE J. 59 (10) (2013) 3986-4003.https://doi.org/10.1002/aic.14117 [9] Y.Y. Bao, N. Gao, Z.M. Gao, Gas-Liquid dispersion by hollow-blade disk turbines with different blade shapes, Chin. J. Process. Eng. 9 (5) (2009) 854-859 [10] M. Cooke, P.J. Heggs, Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions, Chem. Eng. Sci. 60 (20) (2005) 5529-5543.http://dx.doi.org/10.1016/j.ces.2005.05.018 [11] D.A. Rao, P. Sivashanmugam, Experimental and CFD simulation studies on power consumption in mixing using energy saving turbine agitator, J. Ind. Eng. Chem. 16 (1) (2010) 157-161.http://dx.doi.org/10.1016/j.jiec.2010.01.002 [12] H. Ameur, Modifications in the Rushton turbine for mixing viscoplastic fluids, J. Food Eng. 233 (2018) 117-125.http://dx.doi.org/10.1016/j.jfoodeng.2018.04.005 [13] H. Ameur, Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel-Bulkley fluids, Food Bioprod. Process. 117 (2019) 302-309.http://dx.doi.org/10.1016/j.fbp.2019.08.007 [14] C.Y. Ge, J.J. Wang, X.P. Gu, L.F. Feng, CFD simulation and PIV measurement of the flow field generated by modified pitched blade turbine impellers, Chem. Eng. Res. Des. 92 (6) (2014) 1027-1036.http://dx.doi.org/10.1016/j.cherd.2013.08.024 [15] M. Jenne, M. Reuss, A critical assessment on the use of k-ε turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors, Chem. Eng. Sci. 54 (17) (1999) 3921-3941.http://dx.doi.org/10.1016/S0009-2509(99)00093-7 [16] X.X. Duan, X. Feng, C. Peng, C. Yang, Z.S. Mao, Numerical simulation of micro-mixing in gas-liquid and solid-liquid stirred tanks with the coupled CFD-E-model, Chin. J. Chem. Eng. 28 (9) (2020) 2235-2247.http://dx.doi.org/10.1016/j.cjche.2020.06.016 [17] F. Maluta, A. Paglianti, G. Montante, Two-fluids RANS predictions of gas cavities, power consumption, mixing time and oxygen transfer rate in an aerated fermenter scale-down stirred with multiple impellers, Biochem. Eng. J. 166 (2021) 107867.http://dx.doi.org/10.1016/j.bej.2020.107867 [18] S.S. Hoseini, G. Najafi, B. Ghobadian, A.H. Akbarzadeh, Impeller shape-optimization of stirred-tank reactor:CFD and fluid structure interaction analyses, Chem. Eng. J. 413 (2021) 127497.http://dx.doi.org/10.1016/j.cej.2020.127497 [19] H. Wu, G.K. Patterson, Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer, Chem. Eng. Sci. 44 (10) (1989) 2207-2221.http://dx.doi.org/10.1016/0009-2509(89)85155-3 [20] H. Wu, G.K. Patterson, Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer, Chem. Eng. Sci. 44 (10) (1989) 2207-2221.http://dx.doi.org/10.1016/0009-2509(89)85155-3 [21] J. Hinze, Turbulence, McGraw-Hill Publishing Co. New York, 1975 [22] G. Montante, K.C. Lee, A. Brucato, M. Yianneskis, Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels, Chem. Eng. Sci. 56 (12) (2001) 3751-3770.http://dx.doi.org/10.1016/S0009-2509(01)00089-6 [23] Z. Jaworski, B. Zakrzewska, Modelling of the turbulent wall jet generated by a pitched blade turbine impeller:the effect of turbulence model, Chem. Eng. Res. Des. 80 (8) (2002) 846-854.http://dx.doi.org/10.1205/026387602321143381 [24] H. Singh, D.F. Fletcher, J.J. Nijdam, An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine, Chem. Eng. Sci. 66 (23) (2011) 5976-5988.http://dx.doi.org/10.1016/j.ces.2011.08.018 [25] ANSYS. Inc, ANSYS FLUENT Theory Guide, ANSYS. Inc, USA, 2020. [26] Q.H. Zhang, Y.M. Yong, Z.S. Mao, C. Yang, C.J. Zhao, Experimental determination and numerical simulation of mixing time in a gas-liquid stirred tank, Chem. Eng. Sci. 64 (12) (2009) 2926-2933.http://dx.doi.org/10.1016/j.ces.2009.03.030 [27] Z. Jaworski, A.W. Nienow, CFD modelling of continuous precipitation of Barium sulphate in a stirred tank, Chem. Eng. J. 91 (2-3) (2003) 167-174.http://dx.doi.org/10.1016/S1385-8947(02)00150-X [28] ANSYS. Inc, ANSYS FLUENT Users Guide, ANSYS. Inc, USA, 2020. [29] M. Sosnowski, J. Krzywanski, R. Gnatowska, Polyhedral meshing as an innovative approach to computational domain discretization of a cyclone in a fluidized bed CLC unit, E3S Web Conf. 14 (2017) 01027.https://doi.org/10.1051/e3sconf/20171401027 [30] M. Spiegel, T. Redel, Y.J. Zhang, T. Struffert, J. Hornegger, R.G. Grossman, A. Doerfler, C. Karmonik, Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation, Comput. Methods Biomech. Biomed. Eng. 14 (1) (2011) 9-22.http://dx.doi.org/10.1080/10255842.2010.518565 [31] K. Rutherford, S.M.S. Mahmoudi, K.C. Lee, M. Yianneskis, The influence of rushton impeller blade and disk thickness on the mixing characteristics of stirred vessels, Chem. Eng. Res. Des. 74 (3) (1996) 369-378 [32] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks:comparison of turbulence models. Part I:radial flow impellers, Can. J. Chem. Eng. 89 (1) (2011) 23-82.https://doi.org/10.1002/cjce.20446 [33] J.M. Smith, Z. Gao, Power demand of gas dispersing impellers under high load conditions, Chem. Eng. Res. Des. 79 (5) (2001) 575-580.http://dx.doi.org/10.1205/02638760152424352 [34] B.N. Murthy, R.B. Kasundra, J.B. Joshi, Hollow self-inducing impellers for gas-liquid-solid dispersion:experimental and computational study, Chem. Eng. J. 141 (1-3) (2008) 332-345.http://dx.doi.org/10.1016/j.cej.2008.01.040 [35] N.G. Deen, T. Solberg, B.H. Hjertager, Flow generated by an aerated rushton impeller:two-phase PIV experiments and numerical simulations, Can. J. Chem. Eng. 80 (4) (2008) 1-15.https://doi.org/10.1002/cjce.5450800406 [36] T. Płusa, J. Talaga, A. Duda, P. Duda, Modeling mixing dynamics in uncovered baffled and unbaffled stirred tanks, AIChE J. 67 (9) (2021) e17322.https://doi.org/10.1002/aic.17322 [37] J. Aubin, P. Mavros, D.F. Fletcher, J. Bertrand, C. Xuereb, Effect of axial agitator configuration (up-pumping, down-pumping, reverse rotation) on flow patterns generated in stirred vessels, Chem. Eng. Res. Des. 79 (8) (2001) 845-856.http://dx.doi.org/10.1205/02638760152721046 [38] R. Zadghaffari, J.S. Moghaddas, J. Revstedt, A mixing study in a double-Rushton stirred tank, Comput. Chem. Eng. 33 (7) (2009) 1240-1246.http://dx.doi.org/10.1016/j.compchemeng.2009.01.017 [39] A. Ochieng, M.S. Onyango, Homogenization energy in a stirred tank, Chem. Eng. Process. Process. Intensif. 47 (9-10) (2008) 1853-1860.http://dx.doi.org/10.1016/j.cep.2007.10.014 [40] N. Sutudehnezhad, R. Zadghaffari, CFD analysis and design optimization in a curved blade impeller, Int. J. Chem. React. Eng. 15 (1) (2017):137-150 |