[1] F.J. Keil, Multiscale Modelling in Computational Heterogeneous Catalysis. Multiscale Mol. Methods Appl. Chem. Topics in Current Chemistry, 307, Springer, Berlin, 2012, pp. 69-107 [2] M.O. Coppens, G.F. Froment, Diffusion and reaction in a fractal catalyst pore-III. Application to the simulation of vinyl acetate production from ethylene, Chem. Eng. Sci. 49 (24) (1994) 4897-4907 [3] N. Chaouati, A. Soualah, M. Chater, M. Tarighi, L. Pinard, Mechanisms of coke growth on mordenite zeolite, J. Catal. 344 (2016) 354-364.http://dx.doi.org/10.1016/j.jcat.2016.10.011 [4] Z. Lian, S. Ali, T.F. Liu, C.W. Si, B. Li, D.S. Su, Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation, ACS Catal. 8 (5) (2018) 4694-4704 [5] Y.X. Lin, C. Yang, C. Choi, W. Zhang, H. Machida, K. Norinaga, Lattice Boltzmann simulation of multicomponent reaction-diffusion and coke formation in a catalyst with hierarchical pore structure for dry reforming of methane, Chem. Eng. Sci. 229 (2021) 116105 [6] X.S. Yang, S. Wang, K. Zhang, Y.R. He, Evaluation of coke deposition in catalyst particles using particle-resolved CFD model, Chem. Eng. Sci. 229 (2021) 116122 [7] F.J. Keil, C. Rieckmann, Optimization of three-dimensional catalyst pore structures, Chem. Eng. Sci. 49 (24) (1994) 4811-4822 [8] W.Q. Tang, H.P. Yu, T. Zhao, L.Y. Qing, X.F. Xu, S.L. Zhao, A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale, Chem. Eng. Sci. 236 (2021) 116513 [9] L.T. Bu, M.R. Nimlos, D.J. Robichaud, S. Kim, Diffusion of biomass pyrolysis products in H-ZSM-5 by molecular dynamics simulations, J. Phys. Chem. C 121 (1) (2017) 500-510 [10] L.T. Bu, M.R. Nimlos, D.J. Robichaud, S. Kim, Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite, Catal. Today 312 (2018) 73-81.http://dx.doi.org/10.1016/j.cattod.2018.02.012 [11] H. Long, H.F. Lin, M. Yan, Y. Bai, X. Tong, X.G. Kong, S.G. Li, Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal:molecular dynamics, Fuel 292 (2021) 120268 [12] A. Trinchero, A. Hellman, H. Grönbeck, Methane oxidation over Pd and Pt studied by DFT and kinetic modeling, Surf. Sci. 616 (2013) 206-213.http://dx.doi.org/10.1016/j.susc.2013.06.014 [13] D.G. Vlachos, L.D. Schmidt, R. Aris, The effects of phase transitions, surface diffusion, and defects on surface catalyzed reactions:fluctuations and oscillations, J. Chem. Phys. 93 (11) (1990) 8306-8313 [14] P.A. Lin, J.L. Gomez-Ballesteros, J.C. Burgos, P.B. Balbuena, B. Natarajan, R. Sharma, Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles, J. Catal. 349 (2017) 149-155 [15] Y. Suchorski, S.M. Kozlov, I. Bespalov, M. Datler, D. Vogel, Z. Budinska, K.M. Neyman, G. Rupprechter, The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation, Nat. Mater. 17 (6) (2018) 519-522.https://www.nature.com/articles/s41563-018-0080-y [16] J. Cao, A. Rinaldi, M. Plodinec, X. Huang, E. Willinger, A. Hammud, S. Hieke, S. Beeg, L. Gregoratti, C. Colbea, R. Schlögl, M. Antonietti, M. Greiner, M. Willinger, In situ observation of oscillatory redox dynamics of copper, Nat. Commun. 11 (2020) 3554 [17] Y. Suchorski, J. Zeininger, S. Buhr, M. Raab, M. Stöger-Pollach, J. Bernardi, H. Grönbeck, G. Rupprechter, Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis, Science 372 (6548) (2021) 1314-1318 [18] G.L. Wei, C.X. Li, W. Ge, J.B. Li, Simulation of pores-scale reaction-diffusion coupling for the design of catalyst structure, Chin. J. Process Eng. 21(3) (2021) 265-276 [19] H.C. Wu, D.K. Schwartz, Nanoparticle tracking to probe transport in porous media, Acc. Chem. Res. 53 (10) (2020) 2130-2139 [20] Y.P. Li, M.C. Zhao, C.X. Li, W. Ge, Concentration fluctuation due to reaction-diffusion coupling near an isolated active site on catalyst surfaces, Chem. Eng. J. 373 (2019) 744-754 [21] H.L. Li, L.B. Wang, Y.Z. Dai, Z.T. Pu, Z.H. Lao, Y.W. Chen, M.L. Wang, X.S. Zheng, J.F. Zhu, W.H. Zhang, R. Si, C. Ma, J. Zeng, Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation, Nat. Nanotechnol. 13 (5) (2018) 411-417.https://pubmed.ncbi.nlm.nih.gov/29556007/ [22] J. Wei, Q.J. Ge, R.W. Yao, Z.Y. Wen, C.Y. Fang, L.S. Guo, H.Y. Xu, J. Sun, Directly converting CO2 into a gasoline fuel, Nat. Commun. 8 (2017) 15174 [23] K.P. de Jong, Surprised by selectivity, Science 351 (6277) (2016) 1030-1031 [24] K. Cheng, B. Gu, X.L. Liu, J.C. Kang, Q.H. Zhang, Y. Wang, Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling, Angewandte Chemie Int. Ed. 55 (15) (2016) 4725-4728 [25] P. Gao, S.G. Li, X.N. Bu, S.S. Dang, Z.Y. Liu, H. Wang, L.S. Zhong, M.H. Qiu, C.G. Yang, J. Cai, W. Wei, Y.H. Sun, Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nat. Chem. 9 (10) (2017) 1019-1024 [26] Y.P. Li, M.C. Zhao, C.X. Li, W. Ge, Simulation study on the reaction-diffusion coupling in simple pore structures, Langmuir 33 (42) (2017) 11804-11816.https://pubmed.ncbi.nlm.nih.gov/28930469/ [27] Y.P. Li, C.L. Zhang, C.X. Li, Z.C. Liu, W. Ge, Simulation of the effect of coke deposition on the diffusion of methane in zeolite ZSM-5, Chem. Eng. J. 320 (2017) 458-467.http://dx.doi.org/10.1016/j.cej.2017.03.055 [28] S. Osuna, G. Jiménez-Osés, E.L. Noey, K.N. Houk, Molecular dynamics explorations of active site structure in designed and evolved enzymes, Acc. Chem. Res. 48 (4) (2015) 1080-1089.https://pubmed.ncbi.nlm.nih.gov/25738880/ [29] H.B. Lu, D. Hua, T. Iqabl, X.W. Zhang, G.J. Li, D. Zhang, Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells, Int. Commun. Heat Mass Transf. 91 (2018) 40-47.http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.11.009 [30] N. Farzi, N. Salehi, A. Mahboubi, Molecular dynamics simulation of acetylene diffusion in MOF-508a and MOF-508b, Microporous Mesoporous Mater. 248 (2017) 246-255 [31] C.L. Zhang, G.F. Shen, C.X. Li, W. Ge, J.H. Li, Hard-sphere/pseudo-particle modelling (HS-PPM) for efficient and scalable molecular simulation of dilute gaseous flow and transport, Mol. Simul. 42 (14) (2016) 1171-1182.http://dx.doi.org/10.1080/08927022.2016.1154551 [32] V.R. Akkaya, I. Kandemir, Event-driven molecular dynamics simulation of hard-sphere gas flows in microchannels, Math. Probl. Eng. 2015 (2015) 842837 [33] D. Ben-Amotz, D.R. Herschbach, Estimation of effective diameters for molecular fluids, J. Phys. Chem. 94 (3) (1990) 1038-1047 [34] L.I. Stiel, G. Thodos, Lennard-Jones force constants predicted from critical properties, J. Chem. Eng. Data 7 (2) (1962) 234-236.http://dx.doi.org/10.1021/je60013a023 [35] J.K. Jeon, H. Lee, J.H. Yim, Y.S. Kim, S.J. Lee, Y.K. Park, J.K. Shon, J.M. Kim, Selective synthesis of 1-butene through positional isomerisation of 2-butene over mesoporous silica MCM-41, Catal. Lett. 119 (1-2) (2007) 179-184 [36] T. Titze, C. Chmelik, J. Kullmann, L. Prager, E. Miersemann, R. Gläser, D. Enke, J. Weitkamp, J. Kärger, Microimaging of transient concentration profiles of reactant and product molecules during catalytic conversion in nanoporous materials, Angew. Chem. Int. Ed. 54 (17) (2015) 5060-5064 [37] M. Grilc, B. Likozar, J. Levec, Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst:reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR, Biomass Bioenergy 63 (2014) 300-312 [38] X.C. Fu, W.X. Shen, T.Y. Yao, Physical chemistry (fourth edition), Higher Education Press, Beijing, 1990 [39] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203 [40] A.M. Chatterjee, Butene Polymers, Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc.,New Jersey,2008 [41] D.H. Sheng, Y. Zhang, Q.X. Song, G. Xu, D.D. Peng, H.Q. Hou, R.G. Xie, D.M. Shan, P.X. Liu, Isomerization of 1-butene to 2-butene catalyzed by metal-organic frameworks, Organometallics 39 (1) (2020) 51-57.https://doi.org/10.1021/acs.organomet.9b00599 [42] J. Turkevich, R.K. Smith, Catalytic isomerization of Butene-1 to Butene-2, J. Chem. Phys. 16 (5) (1948) 466-480 [43] J. Houžvička, V. Ponec, Skeletal isomerization of butene:on the role of the bimolecular mechanism, Ind. Eng. Chem. Res. 36 (5) (1997) 1424-1430 [44] H.H. Mooiweer, K.P. de Jong, B. Kraushaar-Czarnetzki, W.H.J. Stork, B.C.H. Krutzen, Skeletal isomerisation of olefins with the zeolite ferrierite as catalyst, Stud. Surf. Sci. Catal. 84 (1994) 2327-2334 |