[1] Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed Engl. 54 (1) (2015) 52–65 [2] T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes, J. Am. Chem. Soc. 136 (39) (2014) 13925–13931 [3] J.P. Hughes, J. Clipsham, H. Chavushoglu, S.J. Rowley-Neale, C.E. Banks, Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts, Renew. Sustain. Energy Rev. 139 (2021) 110709 [4] Z.B. Liang, R. Zhao, T.J. Qiu, R.Q. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications, EnergyChem 1 (1) (2019) 100001 [5] H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production, Nat. Commun. 6 (2015) 6512 [6] Q. Zhang, H.X. Zhong, F.L. Meng, D. Bao, X.B. Zhang, X.L. Wei, Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode, Nano Res. 11 (3) (2018) 1294–1300 [7] J. Wang, H.X. Zhong, Y.L. Qin, X.B. Zhang, An efficient three-dimensional oxygen evolution electrode, Angew. Chem. Int. Ed. 52 (20) (2013) 5248–5253 [8] M.R. Gao, W.C. Sheng, Z.B. Zhuang, Q.R. Fang, S. Gu, J. Jiang, Y.S. Yan, Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst, J. Am. Chem. Soc. 136 (19) (2014) 7077–7084 [9] J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science 334 (6061) (2011) 1383–1385 [10] T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal. 2 (8) (2012) 1765–1772 [11] S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.P. Grote, A. Savan, B.R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability, Catal. Today 262 (2016) 170–180 [12] Y.H. Fang, Z.P. Liu, Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2(110), J. Am. Chem. Soc. 132 (51) (2010) 18214–18222 [13] F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin, J.M. Bao, W.A. Goddard 3rd, S. Chen, Z.F. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting, Nat. Commun. 9 (1) (2018) 2551 [14] M. Ma, R.X. Ge, X.Q. Ji, X. Ren, Z.A. Liu, A.M. Asiri, X.P. Sun, Benzoate anions-intercalated layered nickel hydroxide nanobelts array: An earth-abundant electrocatalyst with greatly enhanced oxygen evolution activity, ACS Sustainable Chem. Eng. 5 (11) (2017) 9625–9629 [15] X.Y. Lu, C. Zhao, Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes, J. Mater. Chem. A 1 (39) (2013) 12053 [16] Z.L. Wang, S. Xiao, Y.M. An, X. Long, X.L. Zheng, X.H. Lu, Y.X. Tong, S.H. Yang, Co(II)1–xCo(0)x/3Mn(III)2x/3S nanoparticles supported on B/N-codoped mesoporous nanocarbon as a bifunctional electrocatalyst of oxygen reduction/evolution for high-performance zinc-air batteries, ACS Appl. Mater. Interfaces 8 (21) (2016) 13348–13359 [17] X.W. Guo, C.Y. Chen, Y.C. Zhang, Y.X. Xu, H. Pang, The application of transition metal cobaltites in electrochemistry, Energy Storage Mater. 23 (2019) 439–465 [18] Z.Z. Liang, Z.H. Huang, H.T. Yuan, Z.Y. Yang, C.C. Zhang, Y. Xu, W. Zhang, H.Q. Zheng, R. Cao, Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation, Chem. Sci. 9 (34) (2018) 6961–6968 [19] S. Bai, C.M. Wang, M.S. Deng, M. Gong, Y. Bai, J. Jiang, Y.J. Xiong, Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures, Angew. Chem. Int. Ed. 53 (45) (2014) 12120–12124 [20] C. Tang, N.Y. Cheng, Z.H. Pu, W. Xing, X.P. Sun, NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting, Angew. Chem. Int. Ed Engl. 54 (32) (2015) 9351–9355 [21] L.A. Stern, L.G. Feng, F. Song, X.L. Hu, Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles, Energy Environ. Sci. 8 (8) (2015) 2347–2351 [22] T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions, Nat. Commun. 5 (2014) 3949 [23] X.B. Jiang, X.L. Zhu, X.Z. Kong, A facile route to preparation of uniform polymer microspheres by quiescent polymerization with reactor standing still without any stirring, Chem. Eng. J. 213 (2012) 214–217 [24] H. Han, S.S. Li, X.L. Zhu, X.B. Jiang, X.Z. Kong, One step preparation of porous polyurea by reaction of toluene diisocyanate with water and its characterization, RSC Adv. 4 (63) (2014) 33520–33529 [25] X.Y. Zhang, S.Y. Li, X.L. Zhu, X.B. Jiang, X.Z. Kong, Easy preparation of porous polyurea through copolymerization of toluene diisocyanate with ethylenediamine and its use as absorbent for copper ions, React. Funct. Polym. 133 (2018) 143–152 [26] X.Y. Zhang, X.B. Jiang, X.L. Zhu, X.Z. Kong, Effective enhancement of Cu ions adsorption on porous polyurea adsorbent by carboxylic modification of its terminal amine groups, React. Funct. Polym. 147 (2020) 104450 [27] X.B. Jiang, M.S. Bashir, F.L. Zhang, X.Z. Kong, Formation and shape transition of porous polyurea of exotic forms through interfacial polymerization of toluene diisocyanate in aqueous solution of ethylenediamine and their characterization, Eur. Polym. J. 109 (2018) 93–100 [28] S.S. Li, H. Han, X.L. Zhu, X.B. Jiang, X.Z. Kong, Preparation and formation mechanism of porous polyurea by reaction of toluene diisocyanate with water and its application as adsorbent for anionic dye removal, Chin. J. Polym. Sci. 33 (8) (2015) 1196–1210 [29] H. Han, Y.M. Zhou, S.S. Li, Y.P. Wang, X.Z. Kong, Immobilization of lipase from pseudomonas fluorescens on porous polyurea and its application in kinetic resolution of racemic 1-phenylethanol, ACS Appl. Mater. Interfaces 8 (39) (2016) 25714–25724 [30] H. Sun, Y.Y. Wei, X.Z. Kong, X.B. Jiang, Preparation of uniform polyurea microspheres at high yield by precipitation polymerization and their use for laccase immobilization, Polymer 216 (2021) 123432 [31] H.Y. Cao, B. Li, X.B. Jiang, X.L. Zhu, X.Z. Kong, Fluorescent linear polyurea based on toluene diisocyanate: Easy preparation, broad emission and potential applications, Chem. Eng. J. 399 (2020) 125867 [32] X.L. Xiong, Y.Y. Ji, M.W. Xie, C. You, L. Yang, Z.A. Liu, A.M. Asiri, X.P. Sun, MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity, Electrochem. Commun. 86 (2018) 161–165 [33] X. Ren, X.Q. Ji, Y.C. Wei, D. Wu, Y. Zhang, M. Ma, Z.A. Liu, A.M. Asiri, Q. Wei, X.P. Sun, In situ electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: A highly conductive electrocatalyst for the oxygen evolution reaction, Chem. Commun. (Camb) 54 (12) (2018) 1425–1428 [34] M.S. Bashir, X.B. Jiang, X.Z. Kong, Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation, Eur. Polym. J. 129 (2020) 109652 [35] X.J. Yang, X.B. Jiang, M.S. Bashir, X.Z. Kong, Preparation of highly uniform polyurethane microspheres by precipitation polymerization and Pd immobilization on their surface and their catalytic activity in 4-nitrophenol reduction and dye degradation, Ind. Eng. Chem. Res. 59 (7) (2020) 2998–3007 [36] C.C. Hou, S. Cao, W.F. Fu, Y. Chen, Ultrafine CoP nanoparticles supported on carbon nanotubes as highly active electrocatalyst for both oxygen and hydrogen evolution in basic media, ACS Appl. Mater. Interfaces 7 (51) (2015) 28412–28419 [37] K.M. Nam, J.H. Shim, D.W. Han, H.S. Kwon, Y.M. Kang, Y. Li, H. Song, W.S. Seo, J.T. Park, Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: Their interconversion and tuning of phase and morphology, Chem. Mater. 22 (15) (2010) 4446–4454 [38] Y.C. Wei, X. Ren, H.M. Ma, X. Sun, Y. Zhang, X. Kuang, T. Yan, H.X. Ju, D. Wu, Q. Wei, CoC 2 O4 ·2H 2 O derived Co3 O4 nanorods array: A high-efficiency 1D electrocatalyst for alkaline oxygen evolution reaction, Chem. Commun. (Camb) 54 (12) (2018) 1533–1536 [39] A. Loaiza-Gil, J. Arenas, M. Villarroel, F. Imbert, H. del Castillo, B. Fontal, Heavier alcohols synthesis on cobalt phyllosilicate catalysts, J. Mol. Catal. A Chem. 228 (1–2) (2005) 339–344 [40] M.A.A. Qasem, A. Khan, S.A. Onaizi, H.D. Mohamed, A. Helal, M.A. Aziz, Effect of Co(NO3)2·6H2O thermal decomposition temperature on the nano-Co3O4 product morphology and electrocatalysis of water oxidation, J. Appl. Electrochem. 49 (3) (2019) 251–259 [41] H.J. Yan, X.H. Xie, K.W. Liu, H.M. Cao, X.J. Zhang, Y.L. Luo, Facile preparation of Co3O4 nanoparticles via thermal decomposition of Co(NO3)2 loading on C3N4, Powder Technol. 221 (2012) 199–202 [42] B. Ernst, S. Libs, P. Chaumette, A. Kiennemann, Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts, Appl. Catal. A Gen. 186 (1–2) (1999) 145–168 [43] L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao, D. Zhu, Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices, Adv. Mater. 17 (2) (2005) 217–221 [44] J. Qi, W. Zhang, R. Cao, Aligned cobalt-based Co@CoOx nanostructures for efficient electrocatalytic water oxidation, Chem. Commun. 53 (66) (2017) 9277–9280 [45] L.P. Zeng, K.Z. Li, F. Huang, X. Zhu, H.C. Li, Effects of Co3O4 nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity, Chin. J. Catal. 37 (6) (2016) 908–922 [46] X. Kuang, Z.L. Wang, X. Sun, Y. Zhang, Q. Wei, Metal oxide- and N-codoped carbon nanosheets: Facile synthesis derived from MOF nanofibers and their application in oxygen evolution, Chem. Commun. (Camb) 54 (3) (2018) 264–267 [47] C.D. Bai, S.S. Wei, D.R. Deng, X.D. Lin, M.S. Zheng, Q.F. Dong, A nitrogen-doped nano carbon dodecahedron with Co@Co3O4 implants as a bi-functional electrocatalyst for efficient overall water splitting, J. Mater. Chem. A 5 (20) (2017) 9533–9536 [48] D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov, J.W. Rabalais, Carbon nitride deposited using energetic species: A two-phase system, Phys. Rev. Lett. 73 (1) (1994) 118–121 [49] H.C. Tao, C. Yan, A.W. Robertson, Y.N. Gao, J.J. Ding, Y.Q. Zhang, T. Ma, Z.Y. Sun, N-Doping of graphene oxide at low temperature for the oxygen reduction reaction, Chem. Commun. (Camb) 53 (5) (2017) 873–876 [50] S. Sandoval, N. Kumar, J. Oro-Solé, A. Sundaresan, C.N.R. Rao, A. Fuertes, G. Tobias, Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide, Carbon 96 (2016) 594–602 [51] X.L. Li, H.L. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H.J. Dai, Simultaneous nitrogen doping and reduction of graphene oxide, J. Am. Chem. Soc. 131 (43) (2009) 15939–15944 [52] Y. Yang, H.L. Fei, G.D. Ruan, C.S. Xiang, J.M. Tour, Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers, ACS Nano 8 (9) (2014) 9518–9523 [53] S. Dutta, C. Ray, Y. Negishi, T. Pal, Facile synthesis of unique hexagonal nanoplates of Zn/co hydroxy sulfate for efficient electrocatalytic oxygen evolution reaction, ACS Appl. Mater. Interfaces 9 (9) (2017) 8134–8141 [54] R.P. Antony, A.K. Satpati, K. Bhattacharyya, B.N. Jagatap, MOF derived nonstoichiometric Nix Co3–x O4–y nanocage for superior electrocatalytic oxygen evolution, Adv. Mater. Interfaces 3 (20) (2016) 1600632 [55] J.Y. Zhang, B. Qian, S. Sun, S. Tao, W.S. Chu, D.J. Wu, L. Song, Ultrafine Co3 O4 nanoparticles within nitrogen-doped carbon matrix derived from metal–organic complex for boosting lithium storage and oxygen evolution reaction, Small 15 (46) (2019) 1904260 [56] S.K. Singh, V.M. Dhavale, S. Kurungot, Low surface energy plane exposed Co3O4 nanocubes supported on nitrogen-doped graphene as an electrocatalyst for efficient water oxidation, ACS Appl. Mater. Interfaces 7 (1) (2015) 442–451 [57] H.H. Li, M.Y. Tan, C. Huang, W.P. Luo, S.F. Yin, W.J. Yang, Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis, Appl. Surf. Sci. 542 (2021) 148739 [58] H.X. Zhong, J. Wang, F.L. Meng, X.B. Zhang, In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes, Angew. Chem. Int. Ed Engl. 55 (34) (2016) 9937–9941 [59] M. Tahir, L. Pan, R. Zhang, Y.C. Wang, G. Shen, I. Aslam, M.A. Qadeer, N. Mahmood, W. Xu, L. Wang, X. Zhang, J.J. Zou, High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential, ACS Energy Lett. 2 (2017) 2177-2182.[59] M. Tahir, L. Pan, R.R. Zhang, Y.C. Wang, G.Q. Shen, I. Aslam, M.A. Qadeer, N. Mahmood, W. Xu, L. Wang, X.W. Zhang, J.J. Zou, High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential, ACS Energy Lett. 2 (9) (2017) 2177–2182 |