[1] Y.F. Shen, Y.F. Hu, M.J. Wang, W.R. Bao, L.P. Chang, K.C. Xie, Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review, Chin. J. Chem. Eng. 35 (2021) 70–82. [2] W.J. Shi, L.X. Kong, J. Bai, J. Xu, W.C. Li, Z.Q. Bai, W. Li, Effect of CaO/Fe2O3 on fusion behaviors of coal ash at high temperatures, Fuel Process. Technol. 181 (2018) 18–24. [3] K.C. Xie, Reviews of clean coal conversion technology in China: Situations & challenges, Chin. J. Chem. Eng. 35 (2021) 62–69. [4] Z.J. Shen, H. Nikolic, L.S. Caudill, K.L. Liu, A deep insight on the coal ash-to-slag transformation behavior during the entrained flow gasification process, Fuel 289 (2021) 119953. [5] X.D. Liu, Z.W. Jin, Y.H. Jing, P.P. Fan, Z.L. Qi, W.R. Bao, J.C. Wang, X.H. Yan, P. Lv, L.P. Dong, Review of the characteristics and graded utilisation of coal gasification slag, Chin. J. Chem. Eng. 35 (2021) 92–106. [6] H.L. Fan, F.H. Li, Q.Q. Guo, M.X. Guo, Effect of high silicon-aluminum coal ashes on sintering and fusion characteristics of a potassium-rich biomass ash, J. Energy Inst. 93 (5) (2020) 1781–1789. [7] C.B. Nguyen, J. Scherer, M. Hartwich, A. Richter, The morphology evolution of char particles during conversion processes, Combust. Flame 226 (2021) 117–128. [8] F.H. Guo, X. Zhao, Y. Guo, Y.X. Zhang, J.J. Wu, Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon, Colloids Surf. A Physicochem. Eng. Aspects 585 (2020) 124148. [9] Y. Li, F.H. Li, M.J. Ma, B. Yu, C.Y. Zhao, Y.T. Fang, Prediction of ash flow temperature based on liquid phase mass fraction by FactSage, J. Energy Inst. 93 (6) (2020) 2228–2231. [10] L.C. Xie, Y. Lv, L. Xu, The influence of the high potassium biomass on the ash fusion characteristics of coal, J. Energy Inst. 95 (2021) 52–60. [11] G.X. Wu, E.Yazhenskikh, K. Hack, M. Müller, Viscosity model for oxide melts relevant to fuel slags. Part 2: The system SiO2–Al2O3–CaO–MgO–Na2O–K2O, Fuel Process. Technol. 138 (2015) 520–533. [12] L.M. Zhang, J.F. Wang, X.D. Song, Y.H. Bai, M. Yao, G.S. Yu, Influence of biomass ash additive on fusion characteristics of high-silicon-aluminum coal ash, Fuel 282 (2020) 118876. [13] Q.H. Guo, Z.J. Zhou, F.C. Wang, G.S. Yu, Slag properties of blending coal in an industrial OMB coal water slurry entrained-flow gasifier, Energy Convers. Manag. 86 (2014) 683–688. [14] Z.Y. Zhang, S.S. Pang, T. Levi, Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass, Renew. Energy 101 (2017) 356–363. [15] M. Li, F.H. Li, Q.R. Liu, Y.T. Fang, H.X. Xiao, Regulation of ash fusibility for high ash-fusion-temperature (AFT) coal by industrial sludge addition, Fuel 244 (2019) 91–103. [16] X. Dai, J. Bai, P. Yuan, S.Y. Du, D.T. Li, X.D. Wen, W. Li, The application of molecular simulation in ash chemistry of coal, Chin. J. Chem. Eng. 28 (11) (2020) 2723–2732. [17] S. Park, I.S. Ye, J. Oh, C. Ryu, J.H. Koo, Gas and particle flow characteristics in the gas reversing chamber of a syngas cooler for a 300 MWe IGCC process, Appl. Therm. Eng. 70 (1) (2014) 388–396. [18] L.X. Kong, J. Bai, W. Li, Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review, Fuel Process. Technol. 215 (2021) 106751. [19] W.W. Xuan, K.J. Whitty, Q.L. Guan, D.P. Bi, Z.H. Zhan, J.S. Zhang, Influence of SiO2/Al2O3 on crystallization characteristics of synthetic coal slags, Fuel 144 (2015) 103–110. [20] W.W. Xuan, H.N. Wang, D.H. Xia, Depolymerization mechanism of CaO on network structure of synthetic coal slags, Fuel Process. Technol. 187 (2019) 21–27. [21] X. Liu, G.S. Yu, J.L. Xu, Q.F. Liang, H.F. Liu, Viscosity fluctuation behaviors of coal ash slags with high content of calcium and low content of silicon, Fuel Process. Technol. 158 (2017) 115–122. [22] W.J. Shi, M. Laabs, M. Reinmöller, J. Bai, S. Guhl, L.X. Kong, H.Z. Li, B. Meyer, W. Li, In-situ analysis of the effect of CaO/Fe2O3 addition on ash melting and sintering behavior for slagging-type applications, Fuel 285 (2021) 119090. [23] F. Wang, M. Yao, H.Y. Kan, J.P. Kuang, P. Li, J.S. Zhang, Y.X. Zhang, Effect of Al2O3/CaO on the melting and mineral transformation of Ningdong coal ash, Chin. J. Chem. Eng. 28 (12) (2020) 3110–3116. [24] Y.Q. Niu, Y.H. Gong, X. Zhang, Y. Liang, D.H. Wang, S.E. Hui, Effects of leaching and additives on the ash fusion characteristics of high-Na/Ca Zhundong coal, J. Energy Inst. 92 (4) (2019) 1115–1122. [25] Y. Bottinga, D.F. Weill, The viscosity of magmatic silicate liquids; A model calculation, Am. J. Sci. 272 (5) (1972) 438–475. [26] Q.Q. Ren, Y.Z. Zhang, Y. Long, Z.S. Zou, S.S. Chen, J. Li, Investigation on the effect of MgO content on the crystallization behavior of synthetic BF slag, Mater. Manuf. Process. 33 (15) (2018) 1654–1660. [27] H.P. Yuan, Q.F. Liang, X. Gong, Crystallization of coal ash slags at high temperatures and effects on the viscosity, Energy Fuels 26 (6) (2012) 3717–3722. [28] W.W. Xuan, J.S. Zhang, D.H. Xia, Crystallization characteristics prediction of coal slags based on SiO2–Al2O3–CaO–Fe2O3–MgO components, J. Ind. Eng. Chem. 59 (2018) 341–349. [29] J. Yang, J.Q. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D.X. Cai, Y. Kashiwaya, In-situ study of crystallisation behaviour of CaO–SiO2–Na2O–B2O3–TiO2–Al2O3–MgO–Li2O fluorine-free mould fluxes with different CaO/SiO2 ratios, ISIJ Int. 56 (4) (2016) 574–583. [30] Z.H. Yang, Q. Lin, S.C. Lu, Y. He, G.D. Liao, Y. Ke, Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag, Ceram. Int. 40 (5) (2014) 7297–7305. [31] S.F. Zhang, X. Zhang, W. Liu, X.W. Lv, C.G. Bai, L. Wang, Relationship between structure and viscosity of CaO–SiO2–Al2O3–MgO–TiO2 slag, J. Non Cryst. Solids 402 (2014) 214–222. [32] L.X. Kong, J. Bai, H.Z. Li, X.D. Chen, J. Wang, Z.Q. Bai, Z.X. Guo, W. Li, The mineral evolution during coal washing and its effect on ash fusion characteristics of Shanxi high ash coals, Fuel 212 (2018) 268–273. [33] W.W. Xuan, J.S. Zhang, D.H. Xia, The influence of MgO on the crystallization characteristics of synthetic coal slags, Fuel 222 (2018) 523–528. [34] K. Dimitriadis, D.U. Tulyaganov, K.C. Vasilopoulos, M.A. Karakassides, S. Agathopoulos, Influence of K and Mg substitutions on the synthesis and the properties of CaO–MgO–SiO2/Na2O, P2O5, CaF2 bioactive glasses, J. Non Cryst. Solids 573 (2021) 121140. [35] J. Massera, L. Hupa, M. Hupa, Influence of the partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4, J. Non Cryst. Solids 358 (18–19) (2012) 2701–2707. [36] X.M. Li, L.F. Zhi, W.J. Shi, L.X. Kong, J. Bai, J.L. Yu, M. Reinmöller, S. Guhl, B. Meyer, W. Li, Effect of K2O/Na2O on fusion behavior of coal ash with high silicon and aluminum level, Fuel 265 (2020) 116964. [37] C.L. Wu, B.B. Wang, J.Q. Zheng, H.X. Li, Flux mechanism of compound flux on ash and slag of coal with high ash melting temperature, Chin. J. Chem. Eng. 27 (5) (2019) 1200–1206. [38] C.L. Wu, Y. Xin, X. Liu, H.X. Li, F.C. Jiao, Synergistic effect of CaO and MgO addition on coal ash fusibility in a reducing atmosphere, Asia Pac. J. Chem. Eng. 14 (4) (2019) e2324. [39] C.H. Jiang, K.J. Li, J.L. Zhang, Z.J. Liu, L.L. Niu, W. Liang, M.M. Sun, H.B. Ma, Z.M. Wang, The effect of CaO and MgO on the structure and properties of coal ash in the blast furnace: A molecular dynamics simulation and thermodynamic calculation, Chem. Eng. Sci. 210 (2019) 115226. [40] S. Vargas, F.J. Frandsen, K. Dam-Johansen, Rheological properties of high-temperature melts of coal ashes and other silicates, Prog. Energy Combust. Sci. 27 (3) (2001) 237–429. [41] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. van Ende, Reprint of: FactSage thermochemical software and databases, 2010–2016, Calphad 55 (2016) 1–19. [42] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases, Calphad 26 (2) (2002) 189–228. [43] Z.J. Shen, J. Zhou, X. Liu, Q.F. Liang, H.F. Liu, A deep insight on the correlation between slag viscosity fluctuation and decomposition of sulfur-bearing minerals in the entrained flow gasifier, Energy 196 (2020) 117049. [44] M. Liu, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, In situ experimental study of CO2 gasification of petcoke particles on molten slag surface at high temperature, Fuel 285 (2021) 119158. [45] X. Dai, J. Bai, D.T. Li, P. Yuan, T.G. Yan, L.X. Kong, W. Li, Experimental and theoretical investigation on relationship between structures of coal ash and its fusibility for Al2O3–SiO2–CaO–FeO system, J. Fuel Chem. Technol. 47 (6) (2019) 641–648. [46] I. Sunagawa, In situ investigation of nucleation, growth, and dissolution of silicate crystals at high temperatures,Annu. Rev. Earth Planet. Sci.20 (1992) 113–142. [47] Y.S. Ma, G.X. Wu, Q.H. Guo, X. Liu, Y. Gong, G.S. Yu, Investigation of fluctuation behavior in viscosity of coal slags used in entrained-flow gasifiers, Fuel Process. Technol. 181 (2018) 133–141. [48] X. Dai, J. Bai, Q. Huang, Z. Liu, X.J. Bai, C.T. Lin, W. Li, W.P. Guo, X.D. Wen, S.Y. Du, Coal ash fusion properties from molecular dynamics simulation: the role of calcium oxide, Fuel 216 (2018) 760–767. [49] K. Gong, C.E. White, Predicting CaO–(MgO) –Al2O3–SiO2 glass reactivity in alkaline environments from force field molecular dynamics simulations, Cem. Concr. Res. 150 (2021) 106588. [50] Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater. 21 (4) (2014) 353–362. [51] F.J. Pei, H.W. Guo, P. Li, B.J. Yan, J. Li, P. Yang, G.H. Zhu, Influence of low magnesia content on the CaO–Al2O3–SiO2 glass-ceramics: Its crystallization behaviour, microstructure and physical properties, Ceram. Int. 44 (16) (2018) 20132–20139. [52] H.C. Li, D.G. Wang, J.H. Hu, C.Z. Chen, Effect of the partial substitution of K2O, MgO, B2O3 for CaO on crystallization, structure and properties of Na2O–CaO–SiO2–P2O5 system glass-ceramics, Mater. Lett. 106 (2013) 373–376. [53] J. Ma, C.Z. Chen, D.G. Wang, Y. Jiao, J.Z. Shi, Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses, Colloids Surf. B Biointerfaces 81 (1) (2010) 87–95. [54] S.J. Watts, R.G. Hill, M.D. O’Donnell, R.V. Law, Influence of magnesia on the structure and properties of bioactive glasses, J. Non Cryst. Solids 356 (9–10) (2010) 517–524. [55] J. Ma, C.Z. Chen, D.G. Wang, J.H. Hu, Effect of magnesia on structure, degradability and in vitro bioactivity of CaO–MgO–P2O5–SiO2 system ceramics, Mater. Lett. 65 (1) (2011) 130–133. [56] M.W. Liu, J.B. Guo, Y.T. Shao, Effects of CaO and MgO contents on the properties of lightweight aggregate produced from municipal solid wastes, Constr. Build. Mater. 259 (2020) 120398. [57] W.J. Shi, J. Bai, L.X. Kong, H.Z. Li, Z.Q. Bai, S.V. Vassilev, W. Li, An overview of the coal ash transition process from solid to slag, Fuel 287 (2021) 119537. [58] W.W. Xuan, H.N. Wang, D.H. Xia, In-situ observation of crystallization inside coal slags and influence of crystals on flow behavior, Fuel 251 (2019) 242–248. [59] W.W. Xuan, J.S. Zhang, D.H. Xia, Crystallization characteristics of a coal slag and influence of crystals on the sharp increase of viscosity, Fuel 176 (2016) 102–109. |