[1] M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci. 31 (7) (2006) 603–632.http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001 [2] S. Pielka, D. Paluch, J. Staniszewska-Kus, B. Zywicka, L. Solski, L. Szosland, A. Czarny, E. Zaczynska, Wound healing acceleration by a textile dressing containing dibutyrylchitin and chitin, Fibres. Text. East. Eur. 11(2) (2003) 79-84. [3] C. Zheng, X.H. Liu, X.M. Luo, M.H. Zheng, X.C. Wang, W.H. Dan, H.E. Jiang, Development of a novel bio-inspired “cotton-like” collagen aggregate/chitin based biomaterial with a biomimetic 3D microstructure for efficient hemostasis and tissue repair, J. Mater. Chem. B 7 (46) (2019) 7338–7350.https://pubmed.ncbi.nlm.nih.gov/31693046/ [4] A. Bhatnagar, M. Sillanpää, Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—A short review, Adv. Colloid Interface Sci. 152 (1–2) (2009) 26–38.http://dx.doi.org/10.1016/j.cis.2009.09.003 [5] S. Rakshit, S. Mondal, K. Pal, A. Jana, J.P. Soren, P. Barman, K.C. Mondal, S.K. Halder, Extraction of chitin from Litopenaeus vannamei shell and its subsequent characterization: an approach of waste valorization through microbial bioprocessing, Bioprocess Biosyst. Eng. 44 (9) (2021) 1943–1956.http://dx.doi.org/10.1007/s00449-021-02574-y [6] Y.L. Liu, R.E. Xing, H.Y. Yang, S. Liu, Y.K. Qin, K.C. Li, H.H. Yu, P.C. Li, Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens, Int. J. Biol. Macromol. 148 (2020) 424–433.https://pubmed.ncbi.nlm.nih.gov/31954122/ [7] S.I. Ahmad, R. Ahmad, M.S. Khan, R. Kant, S. Shahid, L. Gautam, G.M. Hasan, M.I. Hassan, Chitin and its derivatives: structural properties and biomedical applications, Int. J. Biol. Macromol. 164 (2020) 526–539.http://dx.doi.org/10.1016/j.ijbiomac.2020.07.098 [8] Y. Qin, X.M. Lu, N. Sun, R.D. Rogers, Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers, Green Chem. 12 (6) (2010) 968.https://doi.org/10.1039/c003583a [9] J.L. Shamshina, P.S. Barber, G. Gurau, C.S. Griggs, R.D. Rogers, Pulping of crustacean waste using ionic liquids: to extract or not to extract, ACS Sustainable Chem. Eng. 4 (11) (2016) 6072–6081.https://doi.org/10.1021/acssuschemeng.6b01434 [10] M. Feng, X.M. Lu, K. Jiang, J. Zhang, J.Y. Xin, C.Y. Shi, K.F. Wang, S.J. Zhang, One-step preparation of an antibacterial chitin/Zn composite from shrimp shells using urea-Zn(OAc)2·2H2O aqueous solution, Green Chem. 20 (10) (2018) 2212–2217.https://doi.org/10.1039/c8gc00767e [11] Q. Wang, Y.R. Geng, X.M. Lu, S.J. Zhang, First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET), ACS Sustainable Chem. Eng. 3 (2) (2015) 340–348.https://doi.org/10.1021/sc5007522 [12] M. Feng, X. Lu, L. Wang, J. Zhang, S. Yang, C. Shi, Q. Zhou, S. Zhang, Preparation of the Catalytic Chitin/Zn Composite by Combined Ionic Liquid–Inorganic Salt Aqueous Solution from Shrimp Shells, ACS Sustain. Chem. Eng. (2019) 11990-11998. [13] J. Zhang, M. Feng, X.M. Lu, C.Y. Shi, X.Q. Li, J.Y. Xin, G.K. Yue, S.J. Zhang, Base-free preparation of low molecular weight chitin from crab shell, Carbohydr. Polym. 190 (2018) 148–155.https://pubmed.ncbi.nlm.nih.gov/29628232/ [14] M. Poirier, G. Charlet, Chitin fractionation and characterization in N, N-dimethylacetamide/lithium chloride solvent system, Carbohydr. Polym. 50 (4) (2002) 363–370.http://dx.doi.org/10.1016/S0144-8617(02)00040-1 [15] L.Y. Yan, P.Y. Li, W.K. Zhou, Z.G. Wang, X.M. Fan, M.F. Chen, Y. Fang, H.Q. Liu, Shrimp shell-inspired antifouling chitin nanofibrous membrane for efficient oil/water emulsion separation with in situ removal of heavy metal ions, ACS Sustainable Chem. Eng. 7 (2) (2019) 2064–2072.https://doi.org/10.1021/acssuschemeng.8b04511 [16] H.Y. Yang, G. Gözaydın, R.R. Nasaruddin, J.R.G. Har, X. Chen, X.N. Wang, N. Yan, Toward the shell biorefinery: processing crustacean shell waste using hot water and carbonic acid, ACS Sustainable Chem. Eng. 7 (5) (2019) 5532–5542.https://doi.org/10.1021/acssuschemeng.8b06853 [17] A. Idris, R. Vijayaraghavan, A.F. Patti, D.R. MacFarlane, Distillable protic ionic liquids for keratin dissolution and recovery, ACS Sustainable Chem. Eng. 2 (7) (2014) 1888–1894.https://doi.org/10.1021/sc500229a [18] A. Idris, R. Vijayaraghavan, U.A. Rana, D. Fredericks, A.F. Patti, D.R. MacFarlane, Dissolution of feather keratin in ionic liquids, Green Chem. 15 (2) (2013) 525.https://doi.org/10.1039/c2gc36556a [19] N. Kotov, V. Raus, M. Urbanová, A. Zhigunov, J. Dybal, J. Brus, Impact of cellulose dissolution on 1-butyl-3-methylimidazolium chloride crystallization studied by Raman spectroscopy, wide-angle X-ray scattering, and solid-state NMR, Cryst. Growth Des. 20 (3) (2020) 1706–1715.https://doi.org/10.1021/acs.cgd.9b01458 [20] Y. Ahn, S.Y. Kwak, Y. Song, H. Kim, Physical state of cellulose in BmimCl: dependence of molar mass on viscoelasticity and Sol-gel transition, Phys. Chem. Chem. Phys. 18 (3) (2016) 1460–1469.https://pubmed.ncbi.nlm.nih.gov/26660644/ [21] J.L. Shamshina, Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation. A review, Green Chem. 21 (15) (2019) 3974–3993.https://doi.org/10.1039/c9gc01830a [22] M.L. Tian, L.W. Fang, X.M. Yan, W. Xiao, K.H. Row, Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents, J. Anal. Methods Chem. 2019 (2019) 1948965.https://pubmed.ncbi.nlm.nih.gov/31781471/ [23] J. Richter, M. Ruck, Synthesis and dissolution of metal oxides in ionic liquids and deep eutectic solvents, Molecules 25 (1) (2019) E78.https://pubmed.ncbi.nlm.nih.gov/31878305/ [24] H.B. Xie, S.B. Zhang, S.H. Li, Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2, Green Chem. 8 (7) (2006) 630.https://doi.org/10.1039/b517297g [25] P. Romano, H. Fabritius, D. Raabe, The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material, Acta Biomater. 3 (3) (2007) 301–309.http://dx.doi.org/10.1016/j.actbio.2006.10.003 [26] Y. Kim, R.D. Park, Progress in bioextraction processes of chitin from crustacean biowastes, J. Korean Soc. Appl. Biol. Chem. 58 (4) (2015) 545–554.http://dx.doi.org/10.1007/s13765-015-0080-4 [27] M. Feng, X.M. Lu, J. Zhang, Y. Li, C.Y. Shi, L.L. Lu, S.J. Zhang, Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents, Green Chem. 21 (1) (2019) 87–98.https://doi.org/10.1039/c8gc02506a [28] M. Wahlqvist, A. Shchukarev, XPS spectra and electronic structure of Group IA sulfates, J. Electron Spectrosc. Relat. Phenom. 156-158 (2007) 310–314.http://dx.doi.org/10.1016/j.elspec.2006.11.032 [29] M. Gao, L. He, Z.Y. Guo, Y.R. Yuan, W.W. Li, Sulfate-functionalized nickel hydroxide nanobelts for sustained oxygen evolution, ACS Appl. Mater. Interfaces 12 (1) (2020) 443–450.https://doi.org/10.1021/acsami.9b14216 [30] S. Nikolov, M. Petrov, L. Lymperakis, M. Friák, C. Sachs, H.O. Fabritius, D. Raabe, J. Neugebauer, Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle, Adv. Mater. 22 (4) (2010) 519–526.https://doi.org/10.1002/adma.200902019 |