[1] W.F. Gao, C.M. Liu, H.B. Cao, X.H. Zheng, X. Lin, H.J. Wang, Y. Zhang, Z. Sun, Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries, Waste Manag. 75 (2018) 477–485. http://dx.doi.org/10.1016/j.wasman.2018.02.023 [2] L. Meng, L. Guo, Z.C. Guo, Separation of metals from metal-rich particles of crushed waste printed circuit boards by low-pressure filtration, Waste Manag. 84 (2019) 227–234. https://pubmed.ncbi.nlm.nih.gov/30691897/ [3] X.X. Zhang, L. Li, E.S. Fan, Q. Xue, Y.F. Bian, F. Wu, R.J. Chen, Toward sustainable and systematic recycling of spent rechargeable batteries, Chem. Soc. Rev. 47 (19) (2018) 7239–7302. https://pubmed.ncbi.nlm.nih.gov/30124695/ [4] A. Manthiram, B.H. Song, W.D. Li, A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries, Energy Storage Mater. 6 (2017) 125–139. https://doi.org/10.1016/j.ensm.2016.10.007 [5] X.H. Zheng, Z.W. Zhu, X. Lin, Y. Zhang, Y. He, H.B. Cao, Z. Sun, A mini-review on metal recycling from spent lithium ion batteries, Engineering 4 (3) (2018) 361–370. http://dx.doi.org/10.1016/j.eng.2018.05.018 [6] T. Elwert, Q.S. Hua, K. Schneider, Recycling of lithium iron phosphate batteries: future prospects and research needs, Mater. Sci. Forum 959 (2019) 49–68. https://doi.org/10.4028/www.scientific.net/msf.959.49 [7] J.F. Xiao, J. Li, Z.M. Xu, Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy, Environ. Sci. Technol. 51 (20) (2017) 11960–11966. https://doi.org/10.1021/acs.est.7b02561 [8] Y.L. Zhao, X.Z. Yuan, L.B. Jiang, J. Wen, H. Wang, R.P. Guan, J.J. Zhang, G.M. Zeng, Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J. 383 (2020) 123089. http://dx.doi.org/10.1016/j.cej.2019.123089 [9] P. Meshram, B.D. Pandey, T.R. Mankhand, Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review, Hydrometallurgy 150 (2014) 192–208. http://dx.doi.org/10.1016/j.hydromet.2014.10.012 [10] P.K. Choubey, K.S. Chung, M.S. Kim, J.C. Lee, R.R. Srivastava, Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: from sea water and spent lithium ion batteries (LIBs), Miner. Eng. 110 (2017) 104–121. http://dx.doi.org/10.1016/j.mineng.2017.04.008 [11] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Recycling lithium-ion batteries from electric vehicles, Nature 575 (7781) (2019) 75–86. https://pubmed.ncbi.nlm.nih.gov/31695206/ [12] J.W. Bennett, D. Jones, X. Huang, R.J. Hamers, S.E. Mason, Dissolution of complex metal oxides from first-principles and thermodynamics: cation removal from the (001) surface of Li(Ni1/3Mn1/3Co1/3)O2, Environ. Sci. Technol. 52 (10) (2018) 5792–5802. https://doi.org/10.1021/acs.est.8b00054 [13] D.H.P. Kang, M.J. Chen, O.A. Ogunseitan, Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste, Environ. Sci. Technol. 47 (10) (2013) 5495–5503. https://pubmed.ncbi.nlm.nih.gov/23638841/ [14] S.A. Charef, A.M. Affoune, A. Caballero, M. Cruz-Yusta, J. Morales, Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: a comparative study, Waste Manag. 68 (2017) 518–526. https://pubmed.ncbi.nlm.nih.gov/28669497/ [15] H.Y. Wang, K. Huang, Y. Zhang, X. Chen, W. Jin, S.L. Zheng, Y. Zhang, P. Li, Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustainable Chem. Eng. 5 (12) (2017) 11489–11495. https://doi.org/10.1021/acssuschemeng.7b02700 [16] Z. Li, L.H. He, Y.F. Zhu, C. Yang, A green and cost-effective method for production of LiOH from spent LiFePO4 , ACS Sustainable Chem. Eng. 8 (42) (2020) 15915–15926. https://doi.org/10.1021/acssuschemeng.0c04960 [17] J.L. Zhang, J.T. Hu, Y.B. Liu, Q.K. Jing, C. Yang, Y.Q. Chen, C.Y. Wang, Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries, ACS Sustainable Chem. Eng. 7 (6) (2019) 5626–5631. https://doi.org/10.1021/acssuschemeng.9b00404 [18] Y.Q. Wang, N. An, L. Wen, L. Wang, X.T. Jiang, F. Hou, Y.X. Yin, J. Liang, Recent progress on the recycling technology of Li-ion batteries, J. Energy Chem. 55 (2021) 391–419. http://dx.doi.org/10.1016/j.jechem.2020.05.008 [19] H.Y. Li, H. Ye, M.C. Sun, W.J. Chen, Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method, J. Central South Univ. 27 (11) (2020) 3239–3248. http://dx.doi.org/10.1007/s11771-020-4543-3 [20] W. Song, J.W. Liu, L. You, S.Q. Wang, Q.W. Zhou, Y.L. Gao, R.N. Yin, W.J. Xu, Z.P. Guo, re-synthesis of nano-structured LiFePO4 /graphene composite derived from spent lithium-ion battery for booming electric vehicle application, J. Power Sources 419 (2019) 192–202. http://dx.doi.org/10.1016/j.jpowsour.2019.02.065 [21] W. Wang, Y.F. Wu, An overview of recycling and treatment of spent LiFePO4 batteries in China, Resour. Conserv. Recycl. 127 (2017) 233–243. http://dx.doi.org/10.1016/j.resconrec.2017.08.019 [22] X.L. Li, J. Zhang, D.W. Song, J.S. Song, L.Q. Zhang, Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries, J. Power Sources 345 (2017) 78–84. http://dx.doi.org/10.1016/j.jpowsour.2017.01.118 [23] Y.X. Yang, X.Q. Meng, H.B. Cao, X. Lin, C.M. Liu, Y. Sun, Y. Zhang, Z. Sun, Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process, Green Chem. 20 (13) (2018) 3121–3133. https://doi.org/10.1039/c7gc03376a [24] Q.K. Jing, J.L. Zhang, Y.B. Liu, C. Yang, B.Z. Ma, Y.Q. Chen, C.Y. Wang, E-pH diagrams for the Li-Fe-P-H2O system from 298 to 473 K: thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material, J. Phys. Chem. C 123 (23) (2019) 14207–14215. https://doi.org/10.1021/acs.jpcc.9b02074 [25] K. He, Z.Y. Zhang, F.S. Zhang, A green process for phosphorus recovery from spent LiFePO 4 batteries by transformation of delithiated LiFePO 4 crystal into NaFeS 2, J. Hazard. Mater. 395 (2020) 122614. https://pubmed.ncbi.nlm.nih.gov/32302882/ [26] Q.K. Jing, J.L. Zhang, Y.B. Liu, W.J. Zhang, Y.Q. Chen, C.Y. Wang, Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method, ACS Sustainable Chem. Eng. 8 (48) (2020) 17622–17628. https://doi.org/10.1021/acssuschemeng.0c07166 [27] P. Yadav, C.J. Jie, S. Tan, M. Srinivasan, Recycling of cathode from spent lithium iron phosphate batteries, J. Hazard. Mater. 399 (2020) 123068. https://pubmed.ncbi.nlm.nih.gov/32521319/ [28] X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: simultaneous recovery of Li and Co in a single step, Sep. Purif. Technol. 210 (2019) 690–697. http://dx.doi.org/10.1016/j.seppur.2018.08.072 [29] X.P. Chen, D.Z. Kang, J.Z. Li, T. Zhou, H.R. Ma, Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication, J. Hazard. Mater. 389 (2020) 121887. http://dx.doi.org/10.1016/j.jhazmat.2019.121887 [30] J. Kumar, X. Shen, B. Li, H.Z. Liu, J.M. Zhao, Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4 , Waste Manag. 113 (2020) 32–40. http://dx.doi.org/10.1016/j.wasman.2020.05.046 [31] Y.Z. Jiang, X.P. Chen, S.X. Yan, S.Z. Li, T. Zhou, Pursuing green and efficient process towards recycling of different metals from spent lithium-ion batteries through Ferro-chemistry, Chem. Eng. J. 426 (2021) 131637. http://dx.doi.org/10.1016/j.cej.2021.131637 [32] H.J. Shentu, B. Xiang, Y.J. Cheng, T. Dong, J. Gao, Y.G. Xia, A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery, Environ. Technol. Innov. 23 (2021) 101569. http://dx.doi.org/10.1016/j.eti.2021.101569 [33] Y. Dai, Z.D. Xu, D. Hua, H.N. Gu, N. Wang, Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process, J. Hazard. Mater. 396 (2020) 122707. http://dx.doi.org/10.1016/j.jhazmat.2020.122707 [34] K. Liu, Q.Y. Tan, L.L. Liu, J.H. Li, Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution, Environ. Sci. Technol. 53 (16) (2019) 9781-9788. [35] L.M. Ji, L.J. Li, D. Shi, J.F. Li, Z.Q. Liu, D.F. Xu, X.X. Song, Extraction equilibria of lithium with N, N-bis(2-ethylhexyl)-3-oxobutanamide and tributyl phosphate in kerosene and FeCl3, Hydrometallurgy 164 (2016) 304–312. http://dx.doi.org/10.1016/j.hydromet.2016.06.022 [36] D. Shi, L.C. Zhang, X.W. Peng, L.J. Li, F.G. Song, F. Nie, L.M. Ji, Y.Z. Zhang, Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors, Desalination 441 (2018) 44–51. http://dx.doi.org/10.1016/j.desal.2018.04.029 [37] S. Virolainen, M. Fallah Fini, A. Laitinen, T. Sainio, Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co, Sep. Purif. Technol. 179 (2017) 274–282. http://dx.doi.org/10.1016/j.seppur.2017.02.010 [38] Y. Yang, S.M. Xu, Y.H. He, Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes, Waste Manag. 64 (2017) 219–227. https://pubmed.ncbi.nlm.nih.gov/28336333/ [39] L.C. Zhang, L.J. Li, H.M. Rui, D. Shi, X.W. Peng, L.M. Ji, X.X. Song, Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction, J. Hazard. Mater. 398 (2020) 122840. http://dx.doi.org/10.1016/j.jhazmat.2020.122840 [40] D. Shi, B. Cui, L.J. Li, X.W. Peng, L.C. Zhang, Y.Z. Zhang, Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP - kerosene - FeCl3 system, Sep. Purif. Technol. 211 (2019) 303–309. http://dx.doi.org/10.1016/j.seppur.2018.09.087 [41] Z.Y. Zhou, J.H. Fan, X.T. Liu, Y.F. Hu, X.Y. Wei, Y.L. Hu, W. Wang, Z.Q. Ren, Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent, Hydrometallurgy 191 (2020) 105244. http://dx.doi.org/10.1016/j.hydromet.2019.105244 [42] W. Xiang, S.K. Liang, Z.Y. Zhou, W. Qin, W.Y. Fei, Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone, Hydrometallurgy 171 (2017) 27–32. http://dx.doi.org/10.1016/j.hydromet.2017.04.007 [43] Z.Y. Zhou, W. Qin, Y.F. Chu, W.Y. Fei, Elucidation of the structures of tributyl phosphate/Li complexes in the presence of FeCl3 via UV-visible, Raman and IR spectroscopy and the method of continuous variation, Chem. Eng. Sci. 101 (2013) 577–585. http://dx.doi.org/10.1016/j.ces.2013.07.020 [44] H.F. Li, L.J. Li, X.W. Peng, L.M. Ji, W. Li, Selective recovery of lithium from simulated brine using different organic synergist, Chin. J. Chem. Eng. 27 (2) (2019) 335–340. http://dx.doi.org/10.1016/j.cjche.2018.04.010 [45] X.P. Yu, X.B. Fan, Y.F. Guo, T.L. Deng, Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate, Sep. Purif. Technol. 211 (2019) 790–798. http://dx.doi.org/10.1016/j.seppur.2018.10.054 [46] W. Xiang, S.K. Liang, Z.Y. Zhou, W. Qin, W.Y. Fei, Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium, Hydrometallurgy 166 (2016) 9–15. http://dx.doi.org/10.1016/j.hydromet.2016.08.005 [47] Z.Y. Zhou, W. Qin, W.Y. Fei, Y.G. Li, A study on stoichiometry of complexes of tributyl phosphate and methyl isobutyl ketone with lithium in the presence of FeCl3, Chin. J. Chem. Eng. 20 (1) (2012) 36–39. http://dx.doi.org/10.1016/S1004-9541(12)60360-7 [48] Z.Y. Zhou, W. Qin, S.K. Liang, Y.Z. Tan, W.Y. Fei, Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3, Ind. Eng. Chem. Res. 51 (39) (2012) 12926–12932. https://doi.org/10.1021/ie3015236 [49] T. Wesselborg, S. Virolainen, T. Sainio, Recovery of lithium from leach solutions of battery waste using direct solvent extraction with TBP and FeCl3, Hydrometallurgy 202 (2021) 105593. http://dx.doi.org/10.1016/j.hydromet.2021.105593 [50] H. Su, Z. Li, Z.W. Zhu, L.N. Wang, T. Qi, Extraction relationship of Li+ and H+ using tributyl phosphate in the presence of Fe(III), Sep. Sci. Technol. 55 (9) (2020) 1677–1685. https://doi.org/10.1080/01496395.2019.1604759 [51] H. Su, Z. Li, J. Zhang, Z.W. Zhu, L.N. Wang, T. Qi, Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507, Hydrometallurgy 197 (2020) 105487. http://dx.doi.org/10.1016/j.hydromet.2020.105487 [52] Z.Y. Zhou, W. Qin, Y. Liu, W.Y. Fei, Extraction equilibria of lithium with tributyl phosphate in kerosene and FeCl3, J. Chem. Eng. Data 57 (1) (2012) 82–86. https://doi.org/10.1021/je200803h [53] R. Banda, T.H. Nguyen, M.S. Lee, Recovery of HCl from chloride leach solution of spent HDS catalyst by solvent extraction, Chem. Process. Eng. 34 (1) (2013) 153–163. https://doi.org/10.2478/cpe-2013-0013 [54] X.Y. Guo, X. Cao, G.Y. Huang, Q.H. Tian, H.Y. Sun, Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling, J. Environ. Manag. 198 (2017) 84–89. http://dx.doi.org/10.1016/j.jenvman.2017.04.062 |