[1] C.P. Vinod, K. Wilson, A.F. Lee, Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols, J. Chem. Technol. Biotechnol. 86 (2) (2011) 161–171. https://doi.org/10.1002/jctb.2504 [2] F. Xu, Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition, Biochemistry 35 (23) (1996) 7608–7614. https://pubmed.ncbi.nlm.nih.gov/8652543/ [3] V.V. Torbina, A.A. Vodyankin, S. Ten, G.V. Mamontov, M.A. Salaev, V.I. Sobolev, O.V. Vodyankina, Ag-based catalysts in heterogeneous selective oxidation of alcohols: a review, Catalysts 8 (10) (2018) 447. https://doi.org/10.3390/catal8100447 [4] T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on solid catalysts, Chem. Rev. 104 (6) (2004) 3037–3058. https://pubmed.ncbi.nlm.nih.gov/15186187/ [5] Y. Zhang, X.J. Cui, F. Shi, Y.Q. Deng. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 112 (4) (2018) 2467-2505. [6] M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely, G.J. Hutchings, Role of the support in gold-containing nanoparticles as heterogeneous catalysts, Chem. Rev. 120 (8) (2020) 3890–3938. https://pubmed.ncbi.nlm.nih.gov/32223178/ [7] E. Groppo, A. Lazzarini, M. Carosso, A. Bugaev, M. Manzoli, R.Pellegrini, C. Lamberti, D. Banerjee D, A. Longo. Dynamic behavior of Pd/P4VP catalyst during the aerobic oxidation of 2-propanol: Asimultaneous SAXS/XAS/MS Operand Study. ACS Catal. 8 (8) (2018) 6870-6881. [8] P. Sarmah, B.K. Das, P. Phukan, Novel dicopper(II)-tetracarboxylates as catalysts for selective oxidation of benzyl alcohols with aqueous TBHP, Catal. Commun. 11 (10) (2010) 932–935. 10.1016/j.catcom.2010.03.005 [9] L.M.T. Frija, M.L. Kuznetsov, B.G.M. Rocha, L. Cabral, M.L.S. Cristiano, M.N. Kopylovich, A.J.L. Pombeiro, Organocatalyzed oxidation of benzyl alcohols by a tetrazole-amino-saccharin: a combined experimental and theoretical (DFT) study, Mol. Catal. 442 (2017) 57–65. 10.1016/j.mcat.2017.09.003 [10] J. Zhao, Y.F. Zhang, L. Xu, F.P. Tian, T. Hu, C.G. Meng, Weak base favoring the synthesis of highly ordered V-MCM-41 with well-dispersed vanadium and the catalytic performances on selective oxidation of benzyl alcohol, Chin. J. Chem. Eng. 28 (5) (2020) 1424–1435. 10.1016/j.cjche.2020.02.027 [11] H. Gumus, Performance investigation of Fe3O4 blended poly (vinylidene fluoride) membrane on filtration and benzyl alcohol oxidation: evaluation of sufficiency for catalytic reactors, Chin. J. Chem. Eng. 27 (2) (2019) 314–321. 10.1016/j.cjche.2018.05.006 [12] R.B. Cang, B. Lu, X.P. Li, R. Niu, J.X. Zhao, Q.H. Cai, Iron-chloride ionic liquid immobilized on SBA-15 for solvent-free oxidation of benzyl alcohol to benzaldehyde with H2O2, Chem. Eng. Sci. 137 (2015) 268–275. 10.1016/j.ces.2015.06.044 [13] G.D. Yadav, M.S. Krishnan, Solid acid catalysed acylation of 2-methoxy-naphthalene: role of intraparticle diffusional resistance, Chem. Eng. Sci. 54 (19) (1999) 4189–4197. 10.1016/S0009-2509(99)00092-5 [14] S.R. Joshi, K.L. Kataria, S.B. Sawant, J.B. Joshi, Kinetics of oxidation of benzyl alcohol with dilute nitric acid, Ind. Eng. Chem. Res. 44 (2) (2005) 325–333. https://doi.org/10.1021/ie0303911 [15] I.D. Somma, D. Russo, R. Andreozzi, R. Marotta, S. Guido, Kinetic modelling of benzyl alcohol selective oxidation in aqueous mixtures of nitric and sulfuric acids, Chem. Eng. J. 308 (2017) 738–744. 10.1016/j.cej.2016.09.113 [16] K. Cerdan, W.Y. Ouyang, J.C. Colmenares, M.J. Muñoz-Batista, R. Luque, A.M. Balu, Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol, Chem. Eng. Sci. 194 (2019) 78–84. 10.1016/j.ces.2018.04.001 [17] H.B. Ji, K. Ebitani, T. Mizugaki, K. Kaneda. Oxidation of benzyl alcohol aiming at a greener reaction. React. Kinet. Catal. Lett. 78 (1) (2003) 73-80. [18] G.Q. Liu, C.J. Zhao, G.Z. Wang, Y.X. Zhang, H.M. Zhang, Efficiently electrocatalytic oxidation of benzyl alcohol for energy- saved zinc-air battery using a multifunctional nickel-cobalt alloy electrocatalyst, J. Colloid Interface Sci. 532 (2018) 37–46. https://pubmed.ncbi.nlm.nih.gov/30077065/ [19] H. Li, F. Qin, Z.P. Yang, X.M. Cui, J.F. Wang, L.Z. Zhang, New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies, J. Am. Chem. Soc. 139 (9) (2017) 3513–3521. https://pubmed.ncbi.nlm.nih.gov/28212020/ [20] D. Eisenberg, T.K. Slot, G. Rothenberg, Understanding oxygen activation on metal- and nitrogen-codoped carbon catalysts, ACS Catal. 8 (9) (2018) 8618–8629. 10.1021/acscatal.8b01045 [21] I.M. Denekamp, M. Antens, T.K. Slot, G. Rothenberg, Selective catalytic oxidation of cyclohexene with molecular oxygen: radical versus nonradical pathways, ChemCatChem 10 (5) (2018) 1035–1041. https://pubmed.ncbi.nlm.nih.gov/29610628/ [22] Y.H. Li, D. Nakashima, Y. Ichihashi, S. Nishiyama, S. Tsuruya, Promotion effect of alkali metal added to impregnated cobalt catalysts in the gas-phase catalytic oxidation of benzyl alcohol, Ind. Eng. Chem. Res. 43 (19) (2004) 6021–6026. 10.1021/ie040078e [23] Q. Wang, L.F. Chen, S.L. Guan, X. Zhang, B. Wang, X.Z. Cao, Z. Yu, Y.F. He, D.G. Evans, J.T. Feng, D.Q. Li, Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation, ACS Catal. 8 (4) (2018) 3104–3115. https://doi.org/10.1021/acscatal.7b03655 [24] Y.T. Meng, H.C. Genuino, C.H. Kuo, H. Huang, S.Y. Chen, L.C. Zhang, A. Rossi, S.L. Suib, One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn-ZSM-5, characterization, and catalytic oxidation of hydrocarbons, J. Am. Chem. Soc. 135 (23) (2013) 8594–8605. https://pubmed.ncbi.nlm.nih.gov/23679582/ [25] Y. Fu, Y.L. Guo, Y. Guo, Y.S. Wang, L. Wang, W.C. Zhan, G.Z. Lu. In situ assembly of ultrafine Mn3O4 nanoparticles into MIL-101 for selective aerobic oxidation. Catal. Sci. Technol. 7 (18) (2017) 4136-4144. [26] Y.H. Kim, S.K. Hwang, J.W. Kim, Y.S. Lee, Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes, Ind. Eng. Chem. Res. 53 (31) (2014) 12548–12552. 10.1021/ie5009794 [27] H.B. Ji, Q.L. Yuan, X.T. Zhou, L.X. Pei, L.F. Wang, Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen, Bioorg. Med. Chem. Lett. 17 (22) (2007) 6364–6368. 10.1016/j.bmcl.2007.08.063 [28] Q. Han, X.X. Guo, X.T. Zhou, H.B. Ji, Efficient selective oxidation of alcohols to carbonyl compounds catalyzed by Ru-terpyridine complexes with molecular oxygen, Inorg. Chem. Commun. 112 (2020) 107544. 10.1016/j.inoche.2019.107544 [29] C.H. Liu, C.Y. Lin, J.L. Chen, K.T. Lu, J.F. Lee, J.M. Chen, SBA-15-supported Pd catalysts: the effect of pretreatment conditions on particle size and its application to benzyl alcohol oxidation, J. Catal. 350 (2017) 21–29. 10.1016/j.jcat.2017.01.019 [30] J. Kobayashi, Y. Mori, S. Kobayashi, Multiphase organic synthesis in microchannel reactors, Chem. Asian J. 1 (1–2) (2006) 22–35. https://pubmed.ncbi.nlm.nih.gov/17441035/ [31] A.Y. Olenin, P.G. Mingalev, G.V. Lisichkin, Partial catalytic oxidation of alcohols: catalysts based on metals and metal coordination compounds (a review), Pet. Chem. 58 (8) (2018) 577–592. https://doi.org/10.1134/s0965544118080182 [32] Y. Ide, S. Tominaka, H. Kono, R. Ram, A. Machida, N. Tsunoji. Zeolitic Intralayer microchannels of magadiite, a natural layered silicate, to boost green organic synthesis. Chem. Sci. 9 (46) (2018) 8637-8643. [33] S.N. Zhao, C.Q. Yao, Z.Y. Dong, Y.Y. Liu, G.W. Chen, Q. Yuan, Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor, Chem. Eng. Sci. 186 (2018) 122–134. 10.1016/j.ces.2018.04.042 [34] G.W. Wu, A. Constantinou, E.H. Cao, S. Kuhn, M. Morad, M. Sankar, D. Bethell, G.J. Hutchings, A. Gavriilidis, Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor, Ind. Eng. Chem. Res. 54 (16) (2015) 4183–4189. https://doi.org/10.1021/ie5041176 [35] X. Zhang, H. Liu, A. Samb, G.F. Wang, CFD simulation of homogeneous reaction characteristics of dehydration of fructose to HMF in micro-channel reactors, Chin. J. Chem. Eng. 26 (6) (2018) 1340–1349. 10.1016/j.cjche.2018.04.024 [36] Y.P. Hu, C. Dong, T. Wang, G.S. Luo, Cyclohexanone ammoximation over TS-1 catalyst without organic solvent in a microreaction system, Chem. Eng. Sci. 187 (2018) 60–66. 10.1016/j.ces.2018.04.044 [37] N.H. Othman, Z.T. Wu, K. Li, Micro-structured Bi1.5Y0.3Sm0.2O3–δcatalysts for oxidative coupling of methane, AIChE J. 61 (10) (2015) 3451–3458. https://doi.org/10.1002/aic.14883 [38] K. Bawornruttanaboonya, S. Devahastin, A.S. Mujumdar, N.A. Laosiripojana. Computational fluid dynamic evaluation of a new microreactor design for catalytic partial oxidation of methane. Int. J. Heat Mass Transf. 115 (2017) 174-185. [39] Y.M. Bruschi, E. López, M.N. Pedernera, D.O. Borio, Coupling exothermic and endothermic reactions in an ethanol microreformer for H2 production, Chem. Eng. J. 294 (2016) 97–104. 10.1016/j.cej.2016.02.079 [40] T. Jiwanuruk, S. Putivisutisak, P. Ponpesh, P. Bumroongsakulsawat, T. Tagawa, H. Yamada, S. Assabumrungrat, Effect of flow arrangement on micro membrane reforming for H2 production from methane, Chem. Eng. J. 293 (2016) 319–326. 10.1016/j.cej.2016.02.075 [41] N. Kockmann, D.M. Roberge, Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production, Chem. Eng. Technol. 32 (11) (2009) 1682–1694. https://doi.org/10.1002/ceat.200900355 [42] E. Kertalli, J.C. Schouten, T.A. Nijhuis, Direct synthesis of propylene oxide in the liquid phase under mild conditions, Appl. Catal. A Gen. 524 (2016) 200–205. 10.1016/j.apcata.2016.06.021 [43] F. Mashhadi, A. Habibi, K. Varmira, Enzymatic production of green epoxides from fatty acids present in soapstock in a microchannel bioreactor, Ind. Crops Prod. 113 (2018) 324–334. 10.1016/j.indcrop.2018.01.052 [44] W. Wu, G. Qian, X.G. Zhou, W.K. Yuan. Peroxidization of methyl ethyl ketone in a microchannel reactor. Chem. Eng. Sci. 62 (18-20) (2007) 5127-5132. [45] Q. Han, X.T. Zhou, X.Q. He, H.B. Ji, Mechanism and kinetics of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by cobalt porphyrin in a membrane microchannel reactor, Chem. Eng. Sci. 245 (2021) 116847. 10.1016/j.ces.2021.116847 [46] S.C. Galbraith, S. Park, Z. Huang, H. Liu, R.F. Meyer, M. Metzger, M.H. Flamm, S. Hurley, S. Yoon, Linking process variables to residence time distribution in a hybrid flowsheet model for continuous direct compression, Chem. Eng. Res. Des. 153 (2020) 85–95. 10.1016/j.cherd.2019.10.026 [47] J.D. Babbitt, Note on the fundamental law of diffusion, J. Chem. Phys. 23 (3) (1955) 601–602. 10.1063/1.1742057 [48] P. Painmanakul, K. Loubière, G. Hébrard, M. Mietton-Peuchotb, M. Roustana. Effect of surfactants on liquid-side mass transfer coefficients. Chem. Eng. Sci. 60 (22) (2005) 6480-6491. [49] K.R. Westerterp, L.L. van Dierendonck, J.A. de Kraa, Interfacial areas in agitated gas-liquid contactors, Chem. Eng. Sci. 18 (3) (1963) 157–176. 10.1016/0009-2509(63)85002-2 [50] F. Yoshida, Y. Miura. Gas absorption in agitated gas-liquid contactors. Ind. Eng. Chem. Proc. Des. Dev. 2 (4) (1963) 263-268. [51] W.T. Koetsier, D. Thoenes, Mass Transfer in a closed stirred gas/liquid contactor: part 2: the liquid phase mass transfer coefficient kl, Chem. Eng. J. 5 (1) (1973) 71–75. 10.1016/0300-9467(73)85008-7 [52] O. Chedeville, M. Debacq, C. Porte, Removal of phenolic compounds present in olive mill wastewaters by ozonation, Desalination 249 (2) (2009) 865–869. 10.1016/j.desal.2009.04.014 [53] Y. Haroun, D. Legendre, L. Raynal, Direct numerical simulation of reactive absorption in gas-liquid flow on structured packing using interface capturing method, Chem. Eng. Sci. 65 (1) (2010) 351–356. 10.1016/j.ces.2009.07.018 [54] K. Sundmacher, L.K. Rihko, U. Hoffmann, Classification of reactive distillation processes by dimensionless numbers, Chem. Eng. Commun. 127 (1) (1994) 151–167. 10.1080/00986449408936230 [55] K. Hayashi, A. Tomiyama, Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe, Int. J. Multiph. Flow 39 (2012) 78–87. |