中国化学工程学报 ›› 2023, Vol. 55 ›› Issue (3): 123-136.DOI: 10.1016/j.cjche.2022.04.028
• Full Length Article • 上一篇 下一篇
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo
收稿日期:
2022-02-08
修回日期:
2022-04-04
出版日期:
2023-03-28
发布日期:
2023-06-03
通讯作者:
Tutuk Djoko Kusworo,E-mail:tdkusworo@che.undip.ac.id
基金资助:
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo
Received:
2022-02-08
Revised:
2022-04-04
Online:
2023-03-28
Published:
2023-06-03
Contact:
Tutuk Djoko Kusworo,E-mail:tdkusworo@che.undip.ac.id
Supported by:
摘要: The presence of impurities in the bioethanol fermentation broth should be removed to mitigate any possible ineffective refining processes as well as to enhance bioethanol production. In this study, a pre-filtration process was carried out for separating fermentation yeast cells and residual substrates using a microfiltration membrane. Hydrophilic polyvinylidene fluoride-graphene oxide/titanium dioxide (PVDF-GO/TiO2) membrane with polyvinyl alcohol (PVA) surface-coating modification was fabricated and characterized. Membrane modification attempts have succeeded in increasing the hydrophilicity as indicated by contact angle decline from 72.10° to 34.83° and affinity towards water leading to higher water permeability. The performance evaluation showed that 90.77% of unwanted by-products (yeast cells and residual substrate) can be removed. This high rejection is also followed by a high and stable flux performance at 40.20 L·m-2·h-1 where the flux was increased by 13 times compared to that of the neat membrane. The PVA-coated PVDF-GO/TiO2 showed the best anti-biofouling performance with a flux recovery ratio after 5 days incubation (FRR5d) of 93.55%. This membrane material has excellent prospects in future membrane development for either in-situ application or as a pre-filtration in the fermentation process to separate living cells and residual substrates before being further processed in the refining processes.
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136.
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136.
[1] S. Barak, R.K. Rahman, S. Neupane, E. Ninnemann, F. Arafin, A. Laich,A.C Terracciano, S.S. Vasu. Measuring the effectiveness of high-performance Co-Optima biofuels on suppressing soot formation at high temperature. Proc. Natl. Acad. Sci. U. S. A. 117(7) (2020) 3451–3460. [2] A. Bušić, N. Mardetko, S. Kundas, G. Morzak, H. Belskaya, M.I. Šantek MI, D. Komes, S. Novak, B. Santek. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol Biotechnol. 56(3) (2018) 289–311. [3] M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, S. Patil, Bioethanol production: Feedstock and current technologies, J. Environ. Chem. Eng. 2 (1) (2014) 573–584. [4] P.G. del Río, P. Gullón, F.R. Rebelo, A. Romaní, G. Garrote, B. Gullón, A whole-slurry fermentation approach to high-solid loading for bioethanol production from corn stover, Agronomy 10 (11) (2020) 1790. [5] N. Manmai, Y. Unpaprom, V.K. Ponnusamy, R. Ramaraj, Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation, Fuel 278 (2020) 118262. [6] T. Suresh, N. Sivarajasekar, K. Balasubramani,T. Ahamad, M. Alam, M. Naushad . Process intensification and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: Statistical modelling and optimization. Biomass and Bioenergy. 142 (2020) 105752. [7] H. Nouri, M. Ahi, M. Azin, S.L. Mousavi Gargari, Detoxification vs. adaptation to inhibitory substances in the production of bioethanol from sugarcane bagasse hydrolysate: A case study, Biomass Bioenergy 139 (2020) 105629. [8] S.K. Thangavelu, A.S. Ahmed, F.N. Ani, Review on bioethanol as alternative fuel for spark ignition engines, Renew. Sustain. Energy Rev. 56 (2016) 820–835. [9] S.Q. Fan, Z.Y. Xiao, X.Y. Tang, C.Y. Chen, Y. Zhang, Q. Deng, P.N. Yao, W.J. Li, Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae, Bioresour. Technol. 162 (2014) 8–13. [10] A. Khalid, M. Aslam, M.A. Qyyum, A. Faisal, A.L. Khan, F. Ahmed, M. Lee, J. Kim, N. Jang, I.S. Chang, A.A. Bazmi, M. Yasin, Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects, Renew. Sustain. Energy Rev. 105 (2019) 427–443. [11] S.Q. Fan, J.Y. Liu, X.Y. Tang, W.G. Wang, Z.Y. Xiao, B.Y. Qiu, Y.Y. Wang, S.Z. Jian, Y.M. Qin, Y.N. Wang, Process operation performance of PDMS membrane pervaporation coupled with fermentation for efficient bioethanol production, Chin. J. Chem. Eng. 27 (6) (2019) 1339–1347. [12] A.F. Faria, C.H. Liu, M. Xie, F. Perreault, L.D. Nghiem, J. Ma, M. Elimelech, Thin-film composite forward osmosis membranes functionalized with graphene oxide-silver nanocomposites for biofouling control, J. Membr. Sci. 525 (2017) 146–156. [13] L.S. Oliveira, A.S. Franca. An Overview of the Potential Uses for Coffee Husks. In: Coffee in Health and Disease Prevention. Elsevier; 2015. p. 283–291. [14] T.K. Mai, S. Rodtong, Y. Baimark, J. Rarey, A. Boontawan, Membrane-based purification of optically pure D-lactic acid from fermentation broth to poly(D-lactide) polymer, J. Membr. Sci. 551 (2018) 180–190. [15] R.H. Bello, O. Souza, N. Sellin, S.H.W. Medeiros, Marangoni C. Effect of the microfiltration phase on pervaporation of ethanol produced from banana residues. Comput Aided Chem Eng. 31 (2012) 820–824. [16] J.X. Zhang, L.N. Zhu, S.Y. Zhao, D.H. Wang, Z.G. Guo, A robust and repairable copper-based superhydrophobic microfiltration membrane for high-efficiency water-in-oil emulsion separation, Sep. Purif. Technol. 256 (2021) 117751. [17] M.G. Buonomenna, J. Bae, Membrane processes and renewable energies, Renew. Sustain. Energy Rev. 43 (2015) 1343–1398. [18] Y. Wibisono, E.R. Cornelissen, A.J.B. Kemperman, W.G.J. van der Meer, K. Nijmeijer, Two-phase flow in membrane processes: A technology with a future, J. Membr. Sci. 453 (2014) 566–602. [19] S.H. Mohd Azhar, R. Abdulla, S.A. Jambo, H. Marbawi, J.A. Gansau, A.A. Mohd Faik, K.F. Rodrigues, Yeasts in sustainable bioethanol production: A review, Biochem. Biophys. Rep. 10 (2017) 52–61. [20] S.M. Kumar, S. Roy, Filtration characteristics in dead-end microfiltration of living Saccharomyces cerevisiae cells by alumina membranes, Desalination 229 (1–3) (2008) 348–361. [21] A. Dubey, J. Jain, J. Singh. Potential of Membrane Bioreactors ’ in Ethanol and Biogas Production a Review. International Journal of Chemistry and Chemical Engineering 3(3) (2013) 131–138. [22] N.I. Mat Nawi, H.M. Chean, N. Shamsuddin, M.R. Bilad, T. Narkkun, K. Faungnawaki, A.L. Khan. Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment. Membranes (Basel). 10(6) (2020) 121. [23] X. Shen, Y. Zhao, X. Feng, S. Bi, W. Ding, L. Chen. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer. Biofouling. 29(3) (2013) 331–343. [24] S. Liang, G.G. Qi, K. Xiao, J.Y. Sun, E.P. Giannelis, X. Huang, M. Elimelech, Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors, J. Membr. Sci. 463 (2014) 94–101. [25] J.Y. Jung, K. Kim, S.A. Choi, H. Shin, D. Kim, S.C. Bai, Y.K. Chang, J, Han . Dynamic filtration with a perforated disk for dewatering of Tetraselmis suecica. Environ Technol. 38(24) (2017) 3102–3108. [26] W.Z. Zhang, B.Z. Dong, Effects of physical and chemical aspects on membrane fouling and cleaning using interfacial free energy analysis in forward osmosis, Environ. Sci. Pollut. Res. Int. 25 (22) (2018) 21555–21567. [27] L.L. Yan, X.B. Yang, Y.Y. Zhao, Y.D. Wu, R. Motlhaletsi Moutloali, B.B. Mamba, P. Sorokin, L. Shao, Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation, Sep. Purif. Technol. 285 (2022) 120383. [28] Z.Y. Zhu, J.L. Jiang, X.D. Wang, X.N. Huo, Y.W. Xu, Q.Q. Li, L. Wang, Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles, Chem. Eng. J. 314 (2017) 266–276. [29] A. Ejraei, M.A. Aroon, A. Ziarati Saravani, Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes, J. Water Process. Eng. 28 (2019) 45–53. [30] A. Modi, J. Bellare, Efficient removal of dyes from water by high flux and superior antifouling polyethersulfone hollow fiber membranes modified with ZnO/cGO nanohybrid, J. Water Process. Eng. 29 (2019) 100783. [31] W. Zhan, Z.J. Xu, X.N. Yang, Molecular interlayer intercalation of ethanol-water mixture towards GO laminated membranes, Sep. Purif. Technol. 233 (2020) 116029. [32] L.G. Wu, X.Y. Zhang, T. Wang, C.H. Du, C.H. Yang, Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide, Chem. Eng. Res. Des. 141 (2019) 492–501. [33] M. Ahsani, H. Hazrati, M. Javadi, M. Ulbricht, R. Yegani, Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater, Sep. Purif. Technol. 249 (2020) 116938. [34] C.P. Athanasekou, S. Morales-Torres, V. Likodimos, G.E. Romanos, L.M. Pastrana-Martinez, P. Falaras, et al. Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light. Appl. Catal. B Environ. 158–159 (2014) 361–372. [35] E. Kusiak-Nejman, A.W. Morawski, TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance, Appl. Catal. B Environ. 253 (2019) 179–186. [36] R.N. Zhang, Y.N. Liu, M.R. He, Y.L. Su, X.T. Zhao, M. Elimelech, Z.Y. Jiang, Antifouling membranes for sustainable water purification: Strategies and mechanisms, Chem Soc Rev 45 (21) (2016) 5888–5924. [37] Z.W. Xu, T.F. Wu, J. Shi, K.Y. Teng, W. Wang, M.J. Ma, J. Li, X.M. Qian, C.Y. Li, J.T. Fan, Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment, J. Membr. Sci. 520 (2016) 281–293. [38] M. López-Manchado, B. Herrero, M. Arroyo, Organoclay-natural rubber nanocomposites synthesized by mechanical and solution mixing methods, Polym. Int. 53 (11) (2004) 1766–1772. [39] Y. Zhang, J.R. Cho,S. Park. Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Compos. Part A Appl. Sci. Manuf.109 (2018) 498–506. . [40] D. Rana, K. Bag, S.N. Bhattacharyya, B.M. Mandal, Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST, J. Polym. Sci. B Polym. Phys. 38 (3) (2000) 369–375. [41] Y.L. Luo, X.L. Chen, H.B. Liu, H. Zhang, M. Song, J. Liu, Z.Y. Luo, Precisely tailoring the thermodynamic compatibility between single-walled carbon nanotubes and styrene butadiene rubber via fully atomistic molecular dynamics simulation and theoretical approach, Comput. Mater. Sci. 186 (2021) 109995. [42] K.W. Stöckelhuber, S. Wießner, A. Das, G. Heinrich, Filler flocculation in polymers–a simplified model derived from thermodynamics and game theory, Soft Matter 13 (20) (2017) 3701–3709. [43] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R. de Miguel, L. Bergström, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens, Sci. Technol. Adv. Mater. 14 (2) (2013) 023001. [44] M. Mahmoudian, M.G. Kochameshki, H. Mahdavi, H. Vahabi, M. Enayati. Investigation of structure-performance properties of a special type of polysulfone blended membranes. Polym. Adv. Technol. 29(10) (2018) 2690–2700. [45] M. Hidayah, T.D. Kusworo, H. Susanto. Improving the performance of polysulfone-nano ZnO membranes for water treatment in oil refinery with modified UV irradiation and polyvinyl alcohol. Period. Polytech. Chem. Eng. 27 (2021) 1–11. http://dx.doi.org/110.3311/PPch.17029 [46] X.L. Gao, H.Z. Wang, J. Wang, X. Huang, C.J. Gao, Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance, J. Membr. Sci. 445 (2013) 146–155. [47] S.S. Shen, Y. Hao, Y.Y. Zhang, G.W. Zhang, X.J. Zhou, R.B. Bai, Enhancing the antifouling properties of poly(vinylidene fluoride) (PVDF) membrane through a novel blending and surface-grafting modification approach, ACS Omega 3 (12) (2018) 17403–17415. [48] P. Fabbri, M. Messori. Surface Modification of Polymers. In: Modification of Polymer Properties. Elsevier; 2017. p. 109–30. [49] D.M. Correia, J. Nunes-Pereira, D. Alikin, A.L. Kholkin, S.A.C. Carabineiro, L. Rebouta, M.S. Rodrigues, F. Vaz, C.M. Costa, S. Lanceros-Méndez, Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment, Polymer 169 (2019) 138–147. [50] D. Rana, B. Scheier, R.M. Narbaitz, T. Matsuura, S. Tabe, S.Y. Jasim, K.C. Khulbe, Comparison of cellulose acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water, J. Membr. Sci. 409-410 (2012) 346–354. [51] T.D. Kusworo, N. Aryanti, E. Nurmalasari, D.P. Utomo, PVA coated nano hybrid PES-ZnO membrane for natural rubber wastewater treatment, AIP Conf. Proc. 2197 (1) (2020) 050013. [52] J. Garcia-Ivars, M.I. Iborra-Clar, M.I. Alcaina-Miranda, J.A. Mendoza-Roca, L. Pastor-Alcañiz, Surface photomodification of flat-sheet PES membranes with improved antifouling properties by varying UV irradiation time and additive solution pH, Chem. Eng. J. 283 (2016) 231–242. [53] S. Sakarkar, S. Muthukumaran, V. Jegatheesan, Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes, Chemosphere 257 (2020) 127144. [54] X.P. Yu, X.Y. Mi, Z.H. He, M.J. Meng, H.J. Li, Y.S. Yan, Fouling resistant CA/PVA/TiO 2 imprinted membranes for selective recognition and separation salicylic acid from waste water, Front. Chem. 5 (2017) 2. [55] M. Palencia, Surface free energy of solids by contact angle measurements, J. Sci. Technol. Appl. 2 (2017) 84–93. [56] A. Kozbial, Z.T. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D'Urso, H.T. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements, Langmuir 30 (28) (2014) 8598–8606. [57] Y.J. Huang, Y.S. Ye, Y.C. Yen, L.D. Tsai, B.J. Hwang, F.C. Chang, Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs), Int. J. Hydrog. Energy 36 (23) (2011) 15333–15343. [58] B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination 313 (2013) 199–207. [59] T.D. Kusworo, F. Dalanta, N. Aryanti, N.H. Othman, Intensifying separation and antifouling performance of PSf membrane incorporated by GO and ZnO nanoparticles for petroleum refinery wastewater treatment, J. Water Process. Eng. 41 (2021) 102030. [60] H. Bai, X. Wang, Y. Zhou, L. Zhang. Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci. Mater. Int. 22(3) (2012) 250–257. [61] M.S. Jayalakshmy, J. Philip, Enhancement in pyroelectric detection sensitivity for flexible LiNbO3/PVDF nanocomposite films by inclusion content control, J. Polym. Res. 22 (3) (2015) 1–11. [62] J. Chae, T. Lim, H. Cheng, W. Jung, Modification of the surface morphology and properties of graphene oxide and multi-walled carbon nanotube-based polyvinylidene fluoride membranes according to changes in non-solvent temperature, Nanomaterials 11 (9) (2021) 2269. [63] R.J. Li, J.Y. Li, L.H. Rao, H.J. Lin, L.G. Shen, Y.C. Xu, J.R. Chen, B.Q. Liao, Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation, J. Membr. Sci. 619 (2021) 118790. [64] G.H. Teoh, P.C. Tan, A.L. Ahmad, S.C. Low. Analysis of organic-inorganic compatibility to synthesis defect free composite membrane: A review. J. Membr. Sci. Res. 7(1) (2021) 29–37. [65] Charles M. Hansen, Hansen solubility parameters: A user's handbook, CRC Press, Boca Raton, 2000. [66] A. Mahboubi, C. Uwineza, W. Doyen, H. de Wever, M.J. Taherzadeh, Intensification of lignocellulosic bioethanol production process using continuous double-staged immersed membrane bioreactors, Bioresour. Technol. 296 (2020) 122314. [67] L. Chen, Y. Tian, C.Q. Cao, J. Zhang, Z.N. Li, Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: Role of the reconstructed membrane topology, Water Res. 46 (8) (2012) 2693–2704. [68] C. Abels, F. Carstensen, M. Wessling. Membrane processes in biorefinery applications. J. Memb. Sci. 444 (2013) 285–317. [69] C. Regm, S. Lotfi, J.C. Espíndola, K. Fischer, A. Schulze, A.I. SchäferI. Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2-Coated PES membrane. catalysts. 10(7) (2020) 725. [70] A. Cali, Y. Yağızatlı, A. Sahin, İ. Ar, Highly durable phosphonated graphene oxide doped polyvinylidene fluoride (PVDF) composite membranes, Int. J. Hydrog. Energy 45 (60) (2020) 35171–35179. [71] A. Ouakouak, K. Rihani, L. Youcef, N. Hamdi, S. Guergazi, Adsorption characteristics of Cu ({II}) onto{CaCl}$\less$sub$\greater$2$\less$/sub$\greater$ pretreated Algerian bentonite, Mater. Res. Express 7 (2) (2020) 025045. [72] T.D. Kusworo, H. Susanto, N. Aryanti, N. Rokhati, I.N. Widiasa, H. Al-Aziz, D.P. Utomo, D. Masithoh, A.C. Kumoro, Preparation and characterization of photocatalytic PSf-TiO2/GO nanohybrid membrane for the degradation of organic contaminants in natural rubber wastewater, J. Environ. Chem. Eng. 9 (2) (2021) 105066. [73] D. Kregiel, J. Berlowska, B. Szubzda, Novel permittivity test for determination of yeast surface charge and flocculation abilities, J Ind Microbiol Biotechnol 39 (12) (2012) 1881–1886. [74] T.D. Kusworo, A.C. Kumoro, D.P. Utomo, Phenol and ammonia removal in petroleum refinery wastewater using a poly(vinyl) alcohol coated polysulfone nanohybrid membrane, J. Water Process. Eng. 39 (2021) 101718. [75] H. Alexandre, S. Blanchet, C. Charpentier, Identification of a 49-kDa hydrophobic cell wall mannoprotein present in velum yeast which may be implicated in velum formation, FEMS Microbiol Lett 185 (2) (2000) 147–150. [76] X. Li, A. Sotto, J.S. Li, B. van der Bruggen, Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles, J. Membr. Sci. 524 (2017) 502–528. [77] J. Garcia-Ivars, M.I. Alcaina-Miranda, M.I. Iborra-Clar, J.A. Mendoza-Roca, L. Pastor-Alcañiz, Enhancement in hydrophilicity of different polymer phase-inversion ultrafiltration membranes by introducing PEG/Al2O3 nanoparticles, Sep. Purif. Technol. 128 (2014) 45–57. [78] J. María Arsuaga, A. Sotto, G. del Rosario, A. Martínez, S. Molina, S.B. Teli, J. de Abajo, Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes, J. Membr. Sci. 428 (2013) 131–141. [79] F. Liu, M.R.M. Abed, K. Li, Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3, J. Membr. Sci. 366 (1–2) (2011) 97–103. [80] T.R. Neu, J.R. Lawrence, Extracellular polymeric substances in microbial biofilms. Microbial Glycobiology. Amsterdam: Elsevier, 2010: 733–758. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine[J]. 中国化学工程学报, 2023, 60(8): 69-79. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[6] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis[J]. 中国化学工程学报, 2023, 59(7): 42-50. |
[7] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[8] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[9] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation[J]. 中国化学工程学报, 2023, 58(6): 103-111. |
[10] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography[J]. 中国化学工程学报, 2023, 58(6): 256-265. |
[11] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
[12] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation[J]. 中国化学工程学报, 2023, 57(5): 17-29. |
[13] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
[14] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems[J]. 中国化学工程学报, 2023, 57(5): 72-78. |
[15] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal[J]. 中国化学工程学报, 2023, 57(5): 193-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||