[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213–218. [2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (5) (2004) 299–303. [3] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93. [4] W.R. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (1) (2018) 2–22. [5] A.V. Samokhin, N.V. Alekseev, M.A. Sinayskiy, A.G. Astashov, A.V. Vodopyanov, A.A. Sorokin, S.V. Sintsov, Microwave assisted synthesis of WC nanopowder from nanosized multicomponent system W–C produced in thermal plasma reactor, Int. J. Refract. Met. Hard Mater. 100 (2021) 105618. [6] T. Csanádi, V. Girman, Ł. Maj, J. Morgiel, M.J. Reece, J. Dusza, Hardness anisotropy and active slip systems in a (Hf–Ta–Zr–Nb)C high-entropy carbide during nanoindentation, Int. J. Refract. Met. Hard Mater. 100 (2021) 105646. [7] A. Mueller-Grunz, P. Alveen, S. Rassbach, R. Useldinger, S. Moseley, The manufacture and characterization of WC–(Al)CoCrCuFeNi cemented carbides with nominally high entropy alloy binders, Int. J. Refract. Met. Hard Mater. 84 (2019) 105032. [8] S.Q. Ma, J.Q. Ma, Z.G. Yang, Y.B. Gong, K.L. Li, G. Yu, Z.W. Xue, Synthesis of novel single-phase high-entropy metal carbonitride ceramic powders, Int. J. Refract. Met. Hard Mater. 94 (2021) 105390. [9] J.X. Hou, W.W. Song, L.W. Lan, J.W. Qiao, Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys, J. Mater. Sci. Technol. 48 (2020) 140–145. [10] I.E. Azhari, J. García, F. Soldera, S. Suarez, E. Jiménez-Piqué, F. Mücklich, L. Llanes, Contact damage investigation of CVD carbonitride hard coatings deposited on cemented carbides, Int. J. Refract. Met. Hard Mater. 86 (2020) 105050. [11] L. Toller, C.X. Liu, E. Holmström, T. Larsson, S. Norgren, Investigation of cemented carbides with alternative binders after CVD coating, Int. J. Refract. Met. Hard Mater. 62 (2017) 225–229. [12] L. Zhang, W. Tian, Y. Chen, T. Liu, H.D. Zhang, L. Zhou, J.F. Zhu, Fine platelet-like grained WC–Co cemented carbides: Preparation, characterization, properties and application in PVD coating substrates, Int. J. Refract. Met. Hard Mater. 64 (2017) 135–142. [13] G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature 407 (6802) (2000) 361–364. [14] B. Wang, J. Huang, J. Fan, Y. Dou, H. Zhu, D. Wang, Preparation of FeCoNiCrMn high entropy alloy by electrochemical reduction of solid oxides in molten salt and its corrosion behavior in aqueous solution, J. Electrochem. Soc. 164 (2017) E575-E579. [15] H.D. Jiao, M.Y. Wang, J.G. Tu, S.Q. Jiao, Production of AlCrNbTaTi high entropy alloy via electro-deoxidation of metal oxides, J. Electrochem. Soc. 165 (11) (2018) D574–D579. [16] J. Sure, D.S.M. Vishnu, C. Schwandt, Direct electrochemical synthesis of high-entropy alloys from metal oxides, Appl. Mater. Today 9 (2017) 111–121. [17] J. Sure, D.S.M. Vishnu, C. Schwandt, Electrochemical conversion of oxide spinels into high-entropy alloy, J. Alloys Compd. 776 (2019) 133–141. [18] W.J. Ge, B. Wu, S.R. Wang, S. Xu, C.Y. Shang, Z.T. Zhang, Y. Wang, Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering, Adv. Powder Technol. 28 (10) (2017) 2556–2563. [19] L. Rangaraj, R.V. Sagar, M. Stalin, K. Raghavendra, K. Venkateswarlu, Synthesis, characterization, and mechanical properties evaluation of Mg–Ti3AlC2 composites produced by powder metallurgy/hot pressing, Metall. Mater. Trans. A 50 (8) (2019) 3714–3723. [20] Y.K. Yuan, W.B. Ji, S.J. Dai, Z.Y. Zhang, H.B. Zhang, L.K. Xu, Effects of ultrafine refractory carbides on microstructure and mechanical properties of hot-pressing sintered TiB2–ZrC cermet composites at different temperatures, Int. J. Refract. Met. Hard Mater. 84 (2019) 105002. [21] Z.H. Qiao, X.F. Ma, W. Zhao, H.G. Tang, S.G. Cai, B. Zhao, A novel (W–Al)–C–Co composite cemented carbide prepared by mechanical alloying and hot-pressing sintering, Int. J. Refract. Met. Hard Mater. 26 (3) (2008) 251–255. [22] Y. Yang, X.Y. Luo, T.X. Ma, L.Y. Wen, L.W. Hu, M.L. Hu, Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process, J. Alloys Compd. 864 (2021) 158717. [23] T.X. Ma, X.Y. Luo, Y. Yang, M.L. Hu, L.Y. Wen, S.F. Zhang, L.W. Hu, Reducing carbon contamination by controlling CO32- formation during electrochemical reduction of TiO2, Metall. Mater. Trans. B 52 (2) (2021) 1061–1070. [24] M.J. Kang, K.R. Lim, J.W. Won, Y.S. Na, Effect of Co content on the mechanical properties of A2 and B2 phases in AlCoxCrFeNi high-entropy alloys, J. Alloys Compd. 769 (2018) 808–812. [25] Y.W. Sui, S. Gao, X. Chen, J.Q. Qi, F. Yang, F.X. Wei, Y.Z. He, Q.K. Meng, Z. Sun, Microstructures and electrothermal properties of AlxCrFeNi multi-component alloys, Vacuum 144 (2017) 80–85. [26] Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, T.J. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, J. Alloys Compd. 573 (2013) 96–101. [27] A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Alloys Compd. 683 (2016) 221–230. [28] J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M. de Hosson, Secondary phases in AlxCoCrFeNi high-entropy alloys: An in situ TEM heating study and thermodynamic appraisal, Acta Mater. 131 (2017) 206–220. [29] J. Joseph, P. Hodgson, T. Jarvis, X.H. Wu, N. Stanford, D.M. Fabijanic, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys, Mater. Sci. Eng. A 733 (2018) 59–70. [30] Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, P.K. Liaw, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A 647 (2015) 229–240. [31] M.M. Khruschov, Principles of abrasive wear, Wear 28 (1) (1974) 69–88. [32] Y. Wang, T.Q. Lei, J.J. Liu, Tribo-metallographic behavior of high carbon steels in dry sliding: I. Wear mechanisms and their transition, Wear 231 (1) (1999) 1–11. [33] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (16) (2011) 6308–6317. [34] S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Mater. Sci. Eng. A 527 (21–22) (2010) 5818–5825. [35] H.Z. Ye, R. Liu, D.Y. Li, R.L. Eadie, Wear and friction of a new wear-resistant material: TiNi-based composites, Compos. Sci. Technol. 61 (7) (2001) 987–994. [36] Z.N. Farhat, Contribution of crystallographic texturing to the sliding friction behaviour of fcc and hcp metals, Wear 250 (1–12) (2001) 401–408. [37] Z.S. Nong, Y.N. Lei, J.C. Zhu, Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys, Intermetallics 101 (2018) 144–151. [38] Y.H. Wu, H.J. Yang, R.P. Guo, X.J. Wang, X.H. Shi, P.K. Liaw, J.W. Qiao, Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions, Wear 460-461 (2020) 203452. |