[1] H.S. Yuan, X.Z. Li, The characteristics and utilization of naphthenic crude oil, Guangzhou Chem. Ind. 37(2009) (5)48-51. [2] Y.C. Jin, H.Y. Wang, Technique development of producing lubrication oil by hydrogenation of naphthenic base oil, Contemp. Chem. Ind. 39(2010) (3)261-264. [3] E.T. Hessell, R.A. Abramshe, Alkylated naphthalenes as high-performance synthetic fluids, J. Synth. Lubr. 20(2003) 109-122. [4] M.J. Hourani, T. Hessell, R.A. Abramshe, J. Liang, Alkylated naphthalenes as high-performance synthetic lubricating fluids, Tribol. Trans. 50(1) (2007) 82-87. [5] P.S. Belov, E.N. Grigor'eva, E.M. Nikonorov, N.K. Volobuev, L.N. Sosulina, Alkylnaphthalenes as components of high-temperature lubricants, Chem Technol Fuels Oils 20(4) (1984) 208-210. [6] G.F. Mekhtieva, S.M. Musaev, Alkyl naphthalenes as lubricant and coolant process materials, Chem Technol Fuels Oils 41(4) (2005) 296-299. [7] H. Höke, Metabolism and toxicity of diisopropylnaphthalene as compared to naphthalene and monoalkyl naphthalenes: A minireview, Toxicology 126(1) (1998) 1-7. [8] H.J. Kang, Changes in ecotoxicity of naphthalene and alkylated naphthalenes during photodegradation in water, Chemosphere 222(2019) 656-664. [9] G. Azpíroz, C.G. Blanco, C. Banciella, The use of solvents for purifying industrial naphthalene from coal tar distilled oils, Fuel Process. Technol. 89(2) (2008) 111-117. [10] W.S. Calcott, J.M. Tinker, V. Weinmayr, Hydrofluoric acid as a condensing agent. II. nuclear alkylations in the presence of hydrofluoric acid, J. Am. Chem. Soc. 61(5) (1939) 1010-1015. [11] A.M. Buchbinder, Regeneration of an acidic catalyst by alkylation of aromatic compounds, US Pat., 20150273460(2015). [12] J.L.G. de Almeida, M. Dufaux, Y.B. Taarit, C. Naccache, Linear alkylbenzene, J Am Oil Chem Soc 71(7) (1994) 675-694. [13] H.T. Guo, W.H. Qiao, J. Yang, H.M. Li, Z.S. Li, Synthesis of hexylnaphthalene, characterization of the products and the reaction mechanism, Petroleum Sci. Technol. 22(5-6) (2004) 709-718. [14] A. Olson, Alkylation of aromatics with 1-alkenes, Ind. Eng. Chem. 52(10) (1960) 833-836. [15] Y. Han, Y.Y. Liu, S.W. Wang, X.H. Ge, X.D. Wang, T. Qiu, High-efficiency and safe synthesis of tonalid via two Friedel-Crafts reactions in continuous-flow microreactors, Chin. J. Chem. Eng. 52(2022) 126-135. [16] H. Wang, X.Z. Meng, G.Y. Zhao, S.J. Zhang, Isobutane/butene alkylation catalyzed by ionic liquids: A more sustainable process for clean oil production, Green Chem. 19(6) (2017) 1462-1489. [17] R. Kore, P. Berton, S.P. Kelley, P. Aduri, S.S. Katti, R.D. Rogers, Group IIIA halometallate ionic liquids: Speciation and applications in catalysis, ACS Catal. 7(10) (2017) 7014-7028. [18] P.C. Hu, Y.D. Wang, X.H. Meng, R. Zhang, H.Y. Liu, C.M. Xu, Z.C. Liu, Isobutane alkylation with 2-butene catalyzed by amide-AlCl3-based ionic liquid analogues, Fuel 189(2017) 203-209. [19] Q.Y. Li, R. Zhang, Y.X. Li, X.H. Meng, H.Y. Liu, X.W. Wang, C.M. Xu, H.F. Dong, Q. Su, X.P. Zhang, Z.C. Liu, Reaction behaviors and mechanism of isobutane/propene alkylation catalyzed by composite ionic liquid, Ind. Eng. Chem. Res. 61(25) (2022) 8624-8633. [20] L. Li, X.R. Zhao, C. Chen, H. Xu, L. Liu, J.X. Dong, Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil, ChemistrySelect 4(18) (2019) 5284-5290. [21] C. Chen, Q. Tang, H. Xu, L. Liu, M.X. Tang, X.K. Li, J.X. Dong, Alkylation of naphthalene with n-butene catalyzed by liquid coordination complexes and its lubricating properties, Chin. J. Chem. Eng. 39(2021) 306-313. [22] N.I. Shuikin, N. Pozdnyak, V.A. Shlyapochnikov, Catalytic alkylation of tetralin, Bull. Acad. Sci. USSR Div. Chem. Sci.9(7) (1960) 1163-1165. [23] G.A. Olah, J.A. Olah, Aromatic substitution. XXXVII. Stannic and aluminum chloride catalyzed Friedel-Crafts alkylation of naphthalene with alkyl halides. Differentiation of kinetically and thermodynamically controlled product compositions, and the isomerization of alkylnaphthalenes, J. Am. Chem. Soc. 98(7) (1976) 1839-1842. [24] L.D. Field, S. Sternhell, H.V. Wilton, Electrophilic substitution in naphthalene: Kinetic vs thermodynamic control, J. Chem. Educ. 76(9) (1999) 1246. [25] T. Yang, F.J. Wang, J.P. Huang, D.L. Si, S.L. Liu, A.G. Zhang, Y.D. Wang, J.H. Xu, Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system, React. Chem. Eng. 6(10) (2021) 1950-1960. [26] A.R.C. Morais, L.D. Simoni, M.B. Shiflett, A.M. Scurto, Viscosity and density of a polyol ester lubricating oil saturated with compressed hydrofluoroolefin refrigerants, J. Chem. Eng. Data 65(9) (2020) 4335-4346. [27] R.A. Usmanov, S.V. Mazanov, A.R. Gabitova, L.K. Miftakhova, F.M. Gumerov, R.Z. Musin, I.M. Abdulagatov, The effect of fatty acid ethyl esters concentration on the kinematic viscosity of biodiesel fuel, J. Chem. Eng. Data 60(11) (2015) 3404-3413. [28] M.J. Fan, C.Y. Zhang, P. Wen, W.J. Sun, R. Dong, D.S. Yang, W.M. Li, F. Zhou, W.M. Liu, High-performance lubricant base stocks from biorenewable Gallic acid: Systematic study on their physicochemical and tribological properties, Ind. Eng. Chem. Res. 56(34) (2017) 9513-9523. [29] Waled Abdo Ahmed, Nadia Salih, Jumat Salimon, Darfizzi Derawi, Mohd Ambar Yarmo, Mohammed H. Al-Mashhadani, Emad Yousif, Lubrication properties of dodecanedioate esters-based bio-lubricant, Lett. Appl. Nanobioscience 9(2) (2020) 1117-1125. [30] G.W. Stachowiak, A.W. Batchelor, Physical Properties of Lubricants, Engineering Tribology (Third Ed.),Butterworth-Heinemann, Oxford, 2006. [31] G. Gorla, S.M. Kour, K.V. Padmaja, M.S.L. Karuna, R.B.N. Prasad, Preparation and properties of lubricant base stocks from epoxidized karanja oil and its alkyl esters, Ind. Eng. Chem. Res. 52(47) (2013) 16598-16605. [32] M.J. Fan, Naphthoate based lubricating oil with high oxidation stability and lubricity, Tribol. Int. 138(2019) 204-210. [33] S.S. Kurtz, R.W. King, W.J. Stout, M.E. Peterkin, Carbon-type composition of viscous fractions of petroleum. density-refractivity intercept method, Anal. Chem. 30(7) (1958) 1224-1236. [34] S.S. Kurtz, R.W. King, W.J. Stout, D.G. Partikian, E.A. Skrabek, Relationship between carbon-type composition, viscosity-gravity constant, and refractivity intercept of viscous fractions of petroleum, Anal. Chem. 28(12) (1956) 1928-1936. [35] J.B. Hill, H.B. Coats, The viscosity-gravity constant of petroleum lubricating Oils1, Ind. Eng. Chem. 20(6) (1928) 641-644. [36] S.Z. Erhan, B.K. Sharma, Z.S. Liu, A. Adhvaryu, Lubricant base stock potential of chemically modified vegetable oils, J. Agric. Food Chem. 56(19) (2008) 8919-8925. [37] L. Raghunanan, S.S. Narine, Branched biobased diesters with exceptional low temperature and flow properties for use in lubricant formulations, ACS Sustainable Chem. Eng. 4(5) (2016) 2542-2549. [38] B.K. Sharma, Ester hydroxy derivatives of methyl oleate: Tribological, oxidation and low temperature properties, Bioresour. Technol. 99(15) (2008) 7333-7340. [39] K. Gedik, Y. Uzun, Characterization of the properties of diesel-base oil-solvent-waste oil blends used as generic fuel in diesel engines, Fuel Process. Technol. 139(2015) 135-141. [40] F.H. Zhou, K. Yang, The influence of water content on the acid number of diesel engine lubricant in electrochemical measurement, IOP Conf. Ser.: Mater. Sci. Eng. 1043(5) (2021) 052054. [41] B.K. Sharma, A.J. Stipanovic, Development of a new oxidation stability test method for lubricating oils using high-pressure differential scanning calorimetry, Thermochimica Acta 402(1-2) (2003) 1-18. [42] R.C. Zhang, X.Q. Liu, Z.G. Guo, M.R. Cai, L. Shi, Effective sugar-derived organic gelator for three different types of lubricant oils to improve tribological performance, Friction 8(6) (2020) 1025-1038. [43] C.H. Hu, J. Ai, L. Ma, P. Wen, M.J. Fan, F. Zhou, W.M. Liu, Ester oils prepared from fully renewable resources and their lubricant base oil properties, ACS Omega 6(25) (2021) 16343-16355. [44] C.H. Hu, J. Ai, L. Ma, P. Wen, M.J. Fan, F. Zhou, W.M. Liu, Ester Oils Prepared from Fully Renewable Resources and Their Lubricant Base Oil Properties, ACS Omega. 25(2021) 16343-16355. |