[1] V.A. Vlasov, On a theory of mass transfer during the evaporation of a spherical droplet, Int. J. Heat Mass Transf. 178 (2021) 121597. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121597 [2] Z. Cao, D.K. Tafti, Convective heat transfer in suspensions of prolate ellipsoids, Int. J. Heat Mass Transf. 177 (2021) 121575. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121575 [3] S. Wroński, V. Vladimirov, A. Adach, Modelling of mass transfer from multiple emulsions, Int. J. Heat Mass Transf. 55 (15-16) (2012) 4241-4245. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.065 [4] Y.H. Zhang, A. Prosperetti, Dynamics, heat and mass transfer of a plasmonic bubble on a solid surface, Int. J. Heat Mass Transf. 167 (2021) 120814. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120814 [5] T.T.B. Lan, A.C.A. Sun, Evaporation model of aqueous non-spherical nanoparticle in lab scale: A theoretical approach, Int. J. Multiph. Flow 147 (2022) 103884. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2021.103884 [6] Z.J. Ni, C. Hespel, K. Han, F. Foucher, Numerical simulation of heat and mass transient behavior of single hexadecane droplet under forced convective conditions, Int. J. Heat Mass Transf. 167 (2021) 120736. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120736 [7] Q.B. Liu, S. Xu, Z.J. Chen, J.T. Wang, Analysis of rheological behaviors of two-dimensional emulsion globules with asymmetric internal structures in modest extensional flows, Phys. Fluids 31 (4) (2019) 042003. http://dx.doi.org/10.1063/1.5089678 [8] M. Favelukis, Mass transfer around a double emulsion droplet in a uniform flow, Eur. J. Mech. B fluids 89 (2021) 501-508. http://dx.doi.org/10.1016/j.euromechflu.2021.07.005 [9] M. Favelukis, Mass transfer around a compound drop in an extensional flow, Can. J. Chem. Eng. 99 (S1) (2021) 800-808. https://doi.org/10.1002/cjce.23972 [10] A.J. Liu, J. Chen, Z.Z. Wang, Z.S. Mao, C. Yang, Internal mass and heat transfer between a single deformable droplet and simple extensional creeping flow, Int. J. Heat Mass Transf. 127 (2018) 1040-1053. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.135 [11] D. Krishnamurthy, G. Subramanian, Heat or mass transport from drops in shearing flows. Part 1. The open-streamline regime, J. Fluid Mech. 850 (2018) 439-483. https://doi.org/10.1017/jfm.2018.439 [12] D. Krishnamurthy, G. Subramanian, Heat or mass transport from drops in shearing flows. Part 2. Inertial effects on transport, J. Fluid Mech. 850 (2018) 484-524. https://doi.org/10.1017/jfm.2018.481 [13] Y.R. Lu, D. Pashchenko, P.A. Nikrityuk, A new semiempirical model for the heat and mass transfer inside a spherical catalyst in a stream of hot CH4/H2O gases, Chem. Eng. Sci. 238 (2021) 116565. http://dx.doi.org/10.1016/j.ces.2021.116565 [14] G. Juncu, A numerical study of the unsteady heat/mass transfer inside a circulating sphere, Int. J. Heat Mass Transf. 53 (15-16) (2010) 3006-3012. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.030 [15] Z.W. Jiang, Y.H. Gan, Y.L. Shi, Numerical analysis on the heat/mass transfer to a deformed droplet under a steady electric field, Int. J. Heat Mass Transf. 188 (2022) 122617. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122617 [16] D.L.R. Oliver, T.E. Carleson, J.N. Chung, Transient heat transfer to a fluid sphere suspended in an electric field, Int. J. Heat Mass Transf. 28 (5) (1985) 1005-1009. http://dx.doi.org/10.1016/0017-9310(85)90282-0 [17] D.L.R. Oliver, K.J. DeWitt, Heat transfer in bubbles and droplets at moderate Reynolds numbers: Interior problem, AIChE Symp. Ser. 91(306) (1995) 87-92. [18] A.J. Liu, J. Chen, M. Favelukis, M. Guo, M.H. Yang, C. Yang, T. Zhang, M. Wang, H.Y. Quan, External mass transfer from/to a single sphere in a nonlinear uniaxial extensional creeping flow, Chin. J. Chem. Eng. 41 (2022) 230-245. http://dx.doi.org/10.1016/j.cjche.2021.11.017 [19] M. Favelukis, Mass transfer around a slender drop in a nonlinear extensional flow, Nonlinear Eng. 8 (1) (2019) 117-126. https://doi.org/10.1515/nleng-2018-0019 [20] S.J. Geng, Z.S. Mao, Q.S. Huang, C. Yang, Process intensification in pneumatically agitated slurry reactors, Engineering 7 (3) (2021) 304-325. http://dx.doi.org/10.1016/j.eng.2021.03.002 [21] A.N. Manzano Martínez, M. Assirelli, J. van der Schaaf, Droplet size and liquid-liquid mass transfer with reaction in a rotor-stator Spinning Disk Reactor, Chem. Eng. Sci. 242 (2021) 116706. http://dx.doi.org/10.1016/j.ces.2021.116706 [22] Z.Z. Wang, J. Chen, X. Feng, Z.S. Mao, C. Yang, Visual dynamical measurement of the solute-induced Marangoni effect of a growing drop with a PLIF method, Chem. Eng. Sci. 233 (2021) 116401. http://dx.doi.org/10.1016/j.ces.2020.116401 [23] H.H. Zhang, Y.L. Wang, A. Sayyar, T.F. Wang, Experimental study on breakup of a single bubble in a stirred tank: Effect of gas density and liquid properties, AIChE J. (2021) e17511. https://www.semanticscholar.org/paper/5882ea745ab4def9d3adbcaaaa4b1416248a09b6 [24] H.H. Zhang, Y.L. Wang, A. Sayyar, T.F. Wang, A CFD-PBM coupled model under entire turbulent spectrum for simulating a bubble column with highly viscous media, AIChE J. (2021) e17473. https://www.semanticscholar.org/paper/48f44f68b430720967e1d684ca42b5452de2ad7f [25] H.H. Zhang, A. Sayyar, Y.L. Wang, T.F. Wang, Generality of the CFD-PBM coupled model for bubble column simulation, Chem. Eng. Sci. 219 (2020) 115514. http://dx.doi.org/10.1016/j.ces.2020.115514 [26] A.J. Liu, J. Chen, Z.Z. Wang, J.T. Wang, Z.S. Mao, C. Yang, Unsteady conjugate mass transfer of a 2D deformable droplet in a modest extensional flow in across-slot, Can. J. Chem. Eng. 98 (3) (2020) 804-817. https://doi.org/10.1002/cjce.23645 [27] A.J. Liu, J. Chen, Z.Z. Wang, Z.S. Mao, C. Yang, Unsteady conjugate mass and heat transfer from/to a prolate spheroidal droplet in uniaxial extensional creeping flow, Int. J. Heat Mass Transf. 134 (2019) 1180-1190. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.02.055 [28] V.S. Cabeza, S. Kuhn, A.A. Kulkarni, K.F. Jensen, Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform, Langmuir 28 (17) (2012) 7007-7013. https://pubmed.ncbi.nlm.nih.gov/22475028/ [29] N.A. Frankel, A. Acrivos, Heat and mass transfer from small spheres and cylinders freely suspended in shear flow, Phys. Fluids 11 (9) (1968) 1913-1918. http://dx.doi.org/10.1063/1.1692218 [30] A. Acrivos, Heat transfer at high Péclet number from a small sphere freely rotating in a simple shear field, J. Fluid Mech. 46 (2) (1971) 233-240. https://doi.org/10.1017/s0022112071000508 [31] J.S. Zhang, C. Yang, Z.S. Mao, Mass and heat transfer from or to a single sphere in simple extensional creeping flow, AIChE J. 58 (10) (2012) 3214-3223. https://doi.org/10.1002/aic.12811 [32] Z.B. Zhang, K. Wang, C.B. Xu, Y. Zhang, W.T. Wu, C.H. Lu, W.G. Liu, Y.L. Rao, C. Jiang, C.L. Xu, S.L. Song, Ultrasound enhancing the mass transfer of droplet microreactor for the synthesis of AgInS2 nanocrystals, Chem. Eng. J. 435 (2022) 134948. http://dx.doi.org/10.1016/j.cej.2022.134948 [33] C.A. Edelmann, P.C. le Clercq, B. Noll, Numerical investigation of different modes of internal circulation in spherical drops: Fluid dynamics and mass/heat transfer, Int. J. Multiph. Flow 95 (2017) 54-70. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.05.005 [34] M. Hill, On a spherical vortex, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 185 (1894) 213-245. [35] Q.J. Yang, Q. Mao, W. Cao, Numerical simulation of the Marangoni flow on mass transfer from single droplet with different Reynolds numbers, Colloids Surf. A Physicochem. Eng. Aspects 639 (2022) 128385. http://dx.doi.org/10.1016/j.colsurfa.2022.128385 [36] J. Chen, J.X. Wang, Z.L. Deng, X.D. Liu, Y.P. Chen, Experimental study on Rayleigh-Bénard-Marangoni convection characteristics in a droplet during mass transfer, Int. J. Heat Mass Transf. 172 (2021) 121214. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121214 [37] G. Yang, A. Terzis, I. Zarikos, S.M. Hassanizadeh, B. Weigand, R. Helmig, Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations, Chem. Eng. J. 370 (2019) 444-454. http://dx.doi.org/10.1016/j.cej.2019.03.191 [38] M. Favelukis, A drop in uniaxial and biaxial nonlinear extensional flows, Phys. Fluids 29 (8) (2017) 087102. http://dx.doi.org/10.1063/1.4997078 [39] J. Sherwood, Tip streaming from slender drops in a nonlinear extensional flow, J. Fluid Mech. 144 (1984) 281-295. https://www.semanticscholar.org/paper/45d28eb4114c6c46dd6babe741c3dd46dde5e854 [40] C. Yang, Z.S. Mao, Numerical simulation of interphase mass transfer with the level set approach, Chem. Eng. Sci. 60 (10) (2005) 2643-2660. http://dx.doi.org/10.1016/j.ces.2004.11.054 |